Researchers explain why feather shafts change shape when under stress

December 12, 2016, University of California - San Diego
The feather-shaft cortex is a fibrous composite with varying fiber orientations along the length adjusting to local stress requirements: the increasing amount of axial fibers ensure sufficient flexural rigidity, while the crossed fibers provide reasonable flexibility and torsional rigidity.The features revealed symbolize the unique adaptation of feathers for optimized stiffness and lightness, a natural structure inspiring for advanced engineering designs Credit: UC San Diego

Researchers at the University of California San Diego for the first time have revealed why the shape of the feather shaft changes from round to square when it's put under stress in a paper published in recent issue of Advanced Science. Nature almost always favors roundness. Only under special circumstances does it opt for square shapes. Examples include the cells of plants—which derive their name from the square cells of monks. At a larger, structural level, there are a few rare examples: the seahorse tail, a vine found in the Amazon that has a square cross section, and the feather rachis.

In their study, using fundamental mechanics equations and experiments in modeling materials, researchers show that the square shape provides greater rigidity and higher resistance to ovalization and buckling than a hollow round shape of the same weight. "The most amazing thing is that this reflects textbook mechanics," said Marc Meyers, the paper's senior author and a professor of mechanical and aerospace engineering at the Jacobs School of Engineering at UC San Diego. "And obviously, birds haven't studied that subject."

Ovalization can be observed by subjecting a drink straw to progressive bending: the section will gradually change from round to oval, and the stiffness is correspondingly decreased. But the feathers of flying birds, with a round-to-square sectional shape, retain their rigidity intact in spite of bending. By contrast, non-flight feathers, such as flightless ostrich wing feathers and peacock tail feathers, are not subjected to the same constraints and their shafts do not change from round to square. This is because a is a highly specialized appendage that enables birds to fly, generating thrust and lift. Its mechanical properties are optimized and weight minimized.

The feather-shaft cortex is a fibrous composite with varying fiber orientations along the length adjusting to local stress requirements: the increasing amount of axial fibers ensure sufficient flexural rigidity, while the crossed fibers provide reasonable flexibility and torsional rigidity.

The features revealed symbolize the unique adaptation of feathers for optimized stiffness and lightness, a natural structure inspiring for advanced engineering designs.

"Nature is indeed wondrous," said Bin Wang, the paper's lead author and a member of Meyers' research group. "And it is such a beauty to look at nature with human knowledge."

Wang and Meyers said that the findings could be used to build stronger, stiffer square foam-filled structures for lightweight vehicles, such as drones and other aircraft. They also said that the findings could be applied to other types of energy-efficient structures.

Explore further: Why the seahorse's tail is square

Related Stories

Why the seahorse's tail is square

July 2, 2015

Why is the seahorse's tail square? An international team of researchers has found the answer and it could lead to building better robots and medical devices. In a nutshell, a tail made of square, overlapping segments makes ...

New feather findings get scientists in a flap

October 22, 2014

Scientists from the University of Southampton have revealed that feather shafts are made of a multi-layered fibrous composite material, much like carbon fibre, which allows the feather to bend and twist to cope with the stresses ...

Amber specimen offers rare glimpse of feathered dinosaur tail

December 8, 2016

Researchers have discovered a dinosaur tail complete with its feathers trapped in a piece of amber. The finding reported in Current Biology on December 8 helps to fill in details of the dinosaurs' feather structure and evolution, ...

Recommended for you

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.