Breakthrough work that advances path for nanoscale spin-wave majority gates

December 23, 2016, IMEC
Figure 1 – 2D distribution of spin-waves propagation in a 1µm wide CoFeB conduit recorded using Brillouin light scattering spectroscopy (BLS).

At the Annual Conference on Magnetism and Magnetic Materials, imec, the world-leading research and innovation center in nano-electronics and digital technologies, presented breakthrough results supporting the building of technology-relevant majority gates based on spin waves. Reporting two industry-first achievements that are crucial for ultralow-power beyond-CMOS technology, imec demonstrated the generation and detection of spin waves in sub-micron-sized magnetic waveguides with wavelengths smaller than 350nm traveling over 10 micrometer in a 500nm wide waveguide, and proposed models for majority operation in nanoscale spin-wave structures.

Spintronic majority gate devices are promising alternatives to CMOS technology for certain applications, for example for . Majority gates are devices where the state of the output is determined by the majority of the inputs: if for example more than 50 percent of the inputs are true, the output has to return true. The output of the spin-wave majority gate is then based on the interference of multiple spin waves that propagate in a so-called spin-wave bus, or waveguide. When miniaturized down to the nanoscale, spin-wave majority gates could enable arithmetic circuits that are much more compact and energy-efficient than CMOS-based circuits.

Imec, in collaboration with the University of Kaiserslautern and Paris-Sud University, studied spin-wave propagation in a 10nm thick magnetic waveguide. Importantly, they found that spin waves, excited by an RF-driven antenna, can travel more than 10 micrometers in a 500nm wide waveguide. In a second experiment, they developed an all-electrical detection method for characterizing propagating spin waves in a magnetic bus. Spin waves with wavelengths as miniscule as 340nm could be detected—more than two times smaller than previously achieved industry results—paving the way towards scaled spin-wave conduits.

Figure 2 – Fork structure of a majority gate consisting of input and output magneto-electric cells integrated in a spin-wave bus. The picture shows a snapshot at t=0.8ns when inputs are 110.

Through micromagnetic simulations, the operation of a nanoscaled fork-like spin-wave majority structure was successfully demonstrated. At these small dimensions, magneto-electric cells are used instead of antennas to excite and detect the . The proposed detection scheme allowed imec to capture the majority phase result of the spin-wave interference in a very short time frame, which was less than three nanoseconds.

"Spin-wave majority gates with micro-sized dimensions have previously been reported, however, for them to be CMOS-competitive, they must be scaled and handle waves with nanometer-sized wavelengths," stated Iuliana Radu, distinguished member of technical staff coordinating Beyond CMOS at imec. "We propose here a method to scale these spin-wave devices into nanometer dimensions. Today's exceptional results will open routes towards building spin-wave majority gates that promise to outperform CMOS-based logic technology in terms of power and area reduction."

Explore further: Imec reports breakthrough work that advances path for nanoscale spin-wave majority gates

Related Stories

Researchers take magnetic waves for a spin

January 29, 2014

Researchers at New York University have developed a method for creating and directing fast moving waves in magnetic fields that have the potential to enhance communication and information processing in computer chips and ...

A direct view on spin-waves

April 5, 2016

Spin-waves are promising candidates for future information processing schemes as there is almost no frictional heating in magnetic transport. Information encoding, however, is only possible in spin-wave packets. A group of ...

Recommended for you

Covalently modified two-dimensional arsenic

October 15, 2018

The discovery of graphene, a material made of one or very few atomic layers of carbon, started a boom. Today, such two-dimensional materials are no longer limited to carbon and are hot prospects for many applications, especially ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.