Rallies, protests, and Black Friday: Physics finds dangers hiding in plain sight

November 22, 2016, Uppsala University
Movements in crowds. Credit: Photograph by Ulrike Biets; illustration by Arianna Bottinelli, David T. J. Sumpter, and Jesse L. Silverberg

Inspired by the way people move at heavy metal concerts, an international team of researchers from Uppsala University and Harvard University have learned how to spot danger zones in mass gatherings before disaster strikes.

Publishing online in the journal Physical Review Letters Nov. 23rd, Uppsala University's graduate student Arianna Bottinelli, and professor in David Sumpter, have developed computational tools to predict large-scale in simulated mass gatherings.

The team started with simulated crowds so they could reliably keep track of everyone's position. "From this data, we're able to predict the most risky collective motions that naturally arise in a dense shoulder-to-shoulder crowd," says first author Bottinelli, who will defend her PhD thesis in applied mathematics on the 25th of November.

Sumpter adds, "The next step is to apply these techniques to real-time video data. If we can use computer vision to track people, then our analytical tools can warn event planners of potential hazards before they arise."

Overwhelmingly, are held without incident. But sometimes things go wrong. People can be trampled or asphyxiated by crushing pressures generated by the crowd itself. These types of collective motion have been previously studied, but the new physics-based insights in this work provide an explanation for how these disasters occur in the first place.

Bottinelli, who lead the research, describes it like this: "It all comes down to way people gather into a randomly packed group. Physical body-to-body contacts are the foundation for potentially dangerous collective motion. Our work shows how to identify the emergent risks based on which people are touching each other."

The project started as a study in the way people "dance" at heavy metal concerts. These "mosh pits" forcefully separate the crowd, creating areas near the stage where the crowd is densely packed.

"We were staring at the concert data when we realized there were direct similarities with rallies, protests, and Black Friday sales events," said Dr. Silverberg, postdoctoral fellow at Harvard University, who has been collaborating on this work. "The more we dug, the richer the physics became. Pretty soon we found ideas from material science and field theory could be applied directly to human crowds in extreme situations," he adds.

The researchers noted that awareness is the key to safety. With the upcoming Black Friday shopping holiday in America and the general increase in protest events across the globe, there are increasingly hidden dangers in crowds. The team's conclusions and suggestion to the public is to "keep an eye on your surroundings - if you're packed densely, then there's an inherent risk, and the best way to protect yourself and others is to spread out and move to an area with more physical space" the team concluded.

Explore further: Mosh pits can shed light on panic situations

More information: "Emergent structural mechanisms for high-density collective motion inspired by human crowds" journals.aps.org/prl/accepted/ … 7d79950246d08a4c12d4

Related Stories

Mosh pits can shed light on panic situations

February 27, 2013

(Phys.org)—When physics graduate student Jesse Silverberg took his girlfriend to a heavy metal concert, he didn't dive into the mosh pit as usual. He hung back and observed that humans act like particles, dancing into "collective ...

Predicting human crowds with statistical physics

February 27, 2015

For the first time researchers have directly measured a general law of how pedestrians interact in a crowd. This law can be used to create realistic crowds in virtual reality games and to make public spaces safer.

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.