Increased knowledge on how plants form oxygen from water molecules

November 22, 2016 by Ingrid Söderbergh, Umea University
The structure of the complex in photosystem II where oxygen is evolving in a light-activated state. Water molecules are shown as blue spheres, the four manganese ions in purple, the calcium ion in green and the bridging oxygen ions in red. The blue mesh is the experimental electron density, and the blue sticks are the protein side chains holding the catalytic complex. Credit: Johannes Messinger, Umeå University

With the help of experimental studies on molecular level, researchers are acquiring increased knowledge on how plants form oxygen from water molecules. An international research team has now found a way to visualise this reaction in high-resolution images of photosystem II. The results has recently been published in the journal Nature.

"This work is a breakthrough. It paves way to study step-by-step the formation of an oxygen molecule by two ," says Johannes Messinger, professor in Biological Chemistry at Umeå University and one of the leading researchers in the project.

Plants play a crucial role in mitigating climate change. They use sunlight to remove greenhouse gas carbon dioxide from the atmosphere and convert it into biomass. At the same time, also produce the oxygen we breathe by splitting water into oxygen and biologically bonded hydrogen. This process may prove even more important to save the climate, because if we understand water splitting completely, we can develop technology that produces hydrogen gas (fuel) from solar energy, which is much more efficient than how plants can produce biomass.

In collaboration with an international team of researchers, professor Johannes Messinger, who recently joined the Molecular Biomimetics Programme at Uppsala University, has now found a way to visualise this reaction in using the X-ray free-electron laser at SLAC National Accelerator Laboratory at Stanford University.

Increased knowledge on how plants form oxygen from water molecules
Johannes Messinger, professor in Biological Chemistry at Umeå University in Sweden and one of the leading researchers in the project is also active at Uppsala University. Credit: Magnus Bergström

In the study, published in the current issue of the journal Nature, the research consortium developed new ways to grow microcrystals of photosystem II – the protein complex in plants that is responsible for producing oxygen from water using sunlight. These microcrystals were then placed on a conveyor belt using technology akin to ink-jet printing. On the belt, the crystals were illuminated with laser flashes of green light, to start the water splitting reaction cycle. During this process, the protein complex undergoes a series of steps before the oxygen process starts.

The structure of these activated states were subsequently visualised by hitting the crystals with ultrafast X-ray pulses (10-15s). The present scientific article describes how the authors were able to resolve the structural differences between two of the states in photosystem II that are involved in .

"We are now all set to tackle the final mysteries of how plants make – a dream has come true," says Johannes Messinger.

In order to make the promising progress, research teams from Lawrence Berkeley National Laboratory, Stanford University in the US, Humboldt University in Berlin, Umeå University and Uppsala University in Sweden have collaborated for five years.

Explore further: New, detailed snapshots capture photosynthesis at room temperature

More information: Young, I. et al: Nature. Structure of photosystem II and substrate binding at room temperature. DOI: 10.1038/nature2016

Related Stories

Oxygen levels in the air do not limit plant productivity

February 17, 2011

There have been concerns that present oxygen levels may limit plant productivity. Swedish researchers at Umea University show that this is not the case in a new study published in the journal The Proceedings of the National ...

Molecular snapshots of oxygen formation in photosynthesis

July 11, 2014

Researchers from Umeå University, Sweden, have explored two different ways that allow unprecedented experimental insights into the reaction sequence leading to the formation of oxygen molecules in photosynthesis. The two ...

Recommended for you

Targeting 'hidden pocket' for treatment of stroke and seizure

January 19, 2019

The ideal drug is one that only affects the exact cells and neurons it is designed to treat, without unwanted side effects. This concept is especially important when treating the delicate and complex human brain. Now, scientists ...

Artificially produced cells communicate with each other

January 18, 2019

Friedrich Simmel and Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, ...

Using bacteria to create a water filter that kills bacteria

January 18, 2019

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world's population will be living in water-stressed areas, which is why access to clean water is one of the National Academy ...

Hand-knitted molecules

January 18, 2019

Molecules are usually formed in reaction vessels or laboratory flasks. An Empa research team has now succeeded in producing molecules between two microscopically small, movable gold tips – in a sense as a "hand-knitted" ...

This computer program makes pharma patents airtight

January 17, 2019

Routes to making life-saving medications and other pharmaceutical compounds are among the most carefully protected trade secrets in global industry. Building on recent work programming computers to identify synthetic pathways ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.