Faster manufacturing of breath sensors

November 16, 2016
a. Photo figure of the gas sensor device, b. Cross-sectional FE-SEM image of the MoO3 nanorod arrays. Credit: Osaka University

A group of researchers at Osaka University, succeeded in producing nanostructured gas sensor devices for detecting volatile organic compounds (VOC) in breath for the purpose of healthcare in time equivalent to or shorter than one tenth of the time required for manufacturing conventional gas sensors. This group improved conventional complicated production methods, developing a simple production method of just sintering substrates applied with materials. This gas sensor's sensing response was comparable to the top-of-the-line sensors reported all over the world.

Research leading detection of low concentrations of gas present in exhaled human breath to health checkups and early detection and treatment of serious diseases is being performed. As using nanomaterials can detect various gases even at low concentrations, installing such sensors in electronic healthcare devices is sought after, and research and development are being actively conducted.

Semiconductor gas sensors detect gas through reduced electrical resistance due to gas molecules attached to the surface of crystalline semiconductor materials. For this, gas sensors need a specific surface area of nanomaterials. In order to use nanomaterials for conventional gas sensors, a complicated flow was necessary, from nanomaterials synthesis to cleansing, uniform dispersion of solvent, applying on substrates, and sintering. Thus, there is a concern that manufacturing technology of such gas sensors requires significant time and labor, increasing cost.

A group of researchers led by Assistant Professor Tohru Sugahara (SUGANUMA Lab.) at The Institute of Scientific and Industrial Research, Osaka University, succeeded in producing nanostructured gas sensor devices for detecting (VOC) in breath for the purpose of healthcare in time equivalent to or shorter than one tenth of the time required for manufacturing conventional gas sensors. This group improved conventional complicated production methods, developing a simple production method of just sintering substrates applied with materials. This gas sensor's sensing response was comparable to the top-of-the-line sensors reported all over the world.

Since demand in healthcare products is on the rise, there is a lot of activity in research and development of sensors for checking health and disease by examining the gas components of a person's breath. Breathalyzers for finding out who is driving drunk have already been commercialized. Recently, breath sensors for early detection of life-style diseases such as cancer and diabetes have been developed, but most of them are large, bulky and expensive. If gas sensors with high sensitivity are produced thanks to this group's research results, portable breath sensors enabling of diseases will gain popularity.

Explore further: Sensitive electronic biosniffers diagnose diseases via biomarkers in breath

More information: Shuren Cong et al. Diverse Adsorption/Desorption Abilities Originating from the Nanostructural Morphology of VOC Gas Sensing Devices Based on Molybdenum Trioxide Nanorod Arrays, Advanced Materials Interfaces (2016). DOI: 10.1002/admi.201600252

Related Stories

Sniffing out cancer with improved 'electronic nose' sensors

September 30, 2015

Scientists have been exploring new ways to "smell" signs of cancer by analyzing what's in patients' breath. In ACS' journal Nano Letters, one team now reports new progress toward this goal. The researchers have developed ...

Recommended for you

Volumetric 3-D printing builds on need for speed

December 11, 2017

While additive manufacturing (AM), commonly known as 3-D printing, is enabling engineers and scientists to build parts in configurations and designs never before possible, the impact of the technology has been limited by ...

Tech titans ramp up tools to win over children

December 10, 2017

From smartphone messaging tailored for tikes to computers for classrooms, technology titans are weaving their way into childhoods to form lifelong bonds, raising hackles of advocacy groups.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.