'Listening' to signals traveling through bridges for diagnosing damage

November 29, 2016
The Akashi-Kaikyo Bridge in Japan, the world's longest suspension span. Credit: Wikipedia

A group of Clarkson University mathematicians and a civil engineer developed a passive and noninvasive approach to "listen" to a collection of relevant signals from bridges and other mechanical structures to diagnose changes or damage.

As the group reports this week in Chaos, their approach involves installing accelerometer sensors at various locations along a to measure how each small part of the bridge is disturbed in response to a truck driving across.

"Signals from sensors near the truck loading are relevant, but so are signals far away because they react as the bridge structure flexes under its load and the entire structure oscillates like a guitar string, but obviously more complicated," said Erik M. Bollt, a W. Jon Harrington professor in the Department of Mathematics at Clarkson University, located in Potsdam, NY.

Accelerations serve as "a listening media to forces and accelerations travelling through the structure," Bollt said. "Signals travelling through the structure are expected to change if the bridge undergoes a change, such as a crack within the structure or if some of the bolts holding it together are loosened deliberately."

A central part of the group's analysis is a data processing technique called "optimal mutual information interaction," which was developed to identify significant direct interactions between individual components within a system.

"Our technique adopts ideas from information and communication theory and uses state-of-the-art statistical estimation routines," said Jie Sun, an assistant professor in the Department of Mathematics at Clarkson University. "The key concept is to search for interactions that are most relevant to the increase of predictability of bridge oscillations. If the bridge's structure has been altered due to damage or deformation, the details are expected to change, enabling us to detect the health status of the bridge."

The group's work stands out because it brings together two unique aspects to detect damage within bridges or other mechanical structures.

"One is the noninvasive and automated nature of the data collection process," Sun said. "The other is the data analytics tool we developed, which can infer direct information flow and significant interactions. By combining them, we're able to detect—from only the data—the presence of structural changes within the bridge as controlled and varied in our experiment."

Along the way, the three mathematicians involved found some interesting structural defects revealed by data analysis of significant interactions, which puzzled them for a long time because it just didn't make sense.

"Our analysis suggested a 'boundary' in the middle of the covered area where there is no apparent structural defect or pattern," Sun said. "After long discussions with our collaborator, Kerop Janoyan, a professor of civil engineering at Clarkson University, we finally realized that we'd been confused all along because the covered area isn't the entire bridge in the experiment, but rather a one-third portion and the 'boundary' we discovered is precisely where there is a structural boundary—some supporting structure underneath."

Bridges are ubiquitous, so it's important to be able to detect structural damage as early as possible to avoid disastrous outcomes. But detection of structural damage, which is often done manually, can be costly and in many cases isn't effective.

Since the group's work combines modern sensing technology with state-of-the-art data analytics tools to automate this process, "it can be used for early detection of structural changes and damage before requiring inspection by a human," Bollt said.

This approach can be used along with inexpensive instrumentation for all sorts of structures—from bridges to wind turbines, buildings to airplanes.

"Accelerometers are becoming so cheap that we find them even within cellphones, so this will become a data avalanche, serving as a marriage of modern big with structural health monitoring," Bollt said.

The group is now working to make their approach deployable.

"On the more theoretical side, we're building a database of bridge models that can be easily simulated and tested via computers to calibrate parameters in the method, and we're also developing improved statistical estimators to produce more accurate results faster," Bollt said with Sun's agreement. "On the experimental side, we're collaborating with labs to test our methods for other structures, including airplane wings under various conditions."

Explore further: Sensors monitor Sweden's bridges – and even enable them to tweet

More information: Amila Sudu Ambegedara et al, Information-theoretical noninvasive damage detection in bridge structures, Chaos: An Interdisciplinary Journal of Nonlinear Science (2016). DOI: 10.1063/1.4967920

Related Stories

Picking up bad vibes to gauge bridge health

May 2, 2007

By monitoring changes in vibrations of bridges it is possible to identify hidden cracks and fractures, according to a Queensland University of Technology researcher.

3-D model could help manage US bridge maintenance crisis

February 11, 2015

Nearly one out of every nine bridges in the United States is deemed structurally deficient and potentially dangerous, according to the Federal Highway Administration. It would cost an estimated $70 billion to catch up with ...

Recommended for you

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

New imaging technique peers inside living cells

November 16, 2017

To undergo high-resolution imaging, cells often must be sliced and diced, dehydrated, painted with toxic stains, or embedded in resin. For cells, the result is certain death.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.