Study reveals new earthquake hazard in Afghanistan-Pakistan border region

October 4, 2016, University of Miami
a) Western India plate boundary zone, includes the Chaman fault and Kabul and b) ground velocity field of the Ghazaband fault and Quetta obtained from SAR imagery of the Envisat satellite. Credit: University of Miami

University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science scientists have revealed alarming conclusions about the earthquake hazard in the Afghanistan-Pakistan border region. The new study focused on two of the major faults in the region— the Chaman and Ghazaband faults.

"Typically research is a result of extensive ground-based measurements," said the study's lead author Heresh Fattahi, a UM Rosenstiel School alumni. "These faults, however, are in a region where the political situation makes these ground-based measurements dangerous and virtually impossible."

Using satellite data from 2004-2011acquired by the European Space Agency satellite Envisat, and interferometry, the researchers were able to measure the relative motion of the ground and then model the movement of the underlying faults with an accuracy of just a few millimeters. Using data for a seven-year timeframe using time-series analysis techniques increases the confidence in their results.

The new study shows that the Ghazaband fault is accommodating more than half of the relative motion between the Indian and Eurasian tectonic plates, which indicates that the fault accumulates stress and the potential for a high magnitude earthquake is much higher than previously thought.

Quetta, the capital of Pakistan's Balochistan province and located close to the Ghazaband Fault, lost nearly half of its population following a magnitude 7.7 earthquake in 1935.

"Quetta's population of more than one million is in serious danger if an earthquake were to strike," said Falk Amelung, a UM Rosenstiel School professor of geophysics and a coauthor of the study. "Earthquake-proof construction is vital in avoiding earthquake disasters. Quetta, as well as other cities in the region, is completely unprepared."

The research team also studied the Chaman Fault, the largest fault in the region, running from southern Pakistan to north of Kabul, Afghanistan's capital. This fault was thought to accommodate the lion's share of the relative plate motion, but the satellite data reveal that it may account for only about one third of it.

"We have to rethink the tectonics of the region," said Amelung.

The researchers also found a creeping segment, where the rock masses slide against each other without accumulating any stress that would lead to earthquakes. The creeping fault extends for 340 kilometers (211 miles).

"This is the longest creeping fault ever reported," said Fattahi.

The slower than expected fault rate and the presence of the long creeping segment explains why the region has not, for over 500 years, experienced major earthquakes with fault ruptures from several tens to several hundreds of kilometers. However, they warn, this does not mean there is no hazard.

Explore further: Study finds earthquakes can trigger near-instantaneous aftershocks on different faults

Related Stories

Taking a fault's temperature

September 15, 2016

Ever think about taking a fault's temperature? What would you learn? A unique experiment where temperature was continuously measured for nearly a year inside the fault that made the catastrophic 2011 magnitude 9.0 Japan Earthquake ...

Megathrust quake faults weaker and less stressed than thought

September 10, 2015

Some of the inner workings of Earth's subduction zones and their "megathrust" faults are revealed in a paper published today in the journal Science. U.S. Geological Survey scientist Jeanne Hardebeck calculated the frictional ...

An innovative technique for monitoring submarine faults

July 14, 2016

To monitor a segment of the North Anatolian seismic fault near Istanbul, an international team of researchers, in particular from CNRS and Université de Bretagne Occidentale, has installed a network of transponders on the ...

Recommended for you

Semimetals are high conductors

March 18, 2019

Researchers in China and at UC Davis have measured high conductivity in very thin layers of niobium arsenide, a type of material called a Weyl semimetal. The material has about three times the conductivity of copper at room ...

Researchers discover new material to help power electronics

March 18, 2019

Electronics rule our world, but electrons rule our electronics. A research team at The Ohio State University has discovered a way to simplify how electronic devices use those electrons—using a material that can serve dual ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.