New radar system could lead to better defences against avalanches

September 14, 2016, Engineering and Physical Sciences Research Council

A new radar-based imaging system with an unprecedented ability to penetrate snow-powder clouds could lead to greater avalanche protection for towns, buildings, roads and railways.

Successfully installed and tested in the Swiss Alps last winter, the system produces 3D images that reveal how snow flows deep inside avalanches. This new data will strengthen computer models that are used not only to understand the behaviour of avalanches but also to pinpoint ways of building better defences against them. 

Funded by the Engineering and Physical Sciences Research Council (EPSRC), the Advanced MIMO Radar Development for Geophysical Imaging Applications system was developed by a team from University College London (UCL), Durham University and Sheffield University, working in close collaboration with the Swiss Federal Institute for Snow and Avalanche Research (SLF).

Project leader Professor Paul Brennan, of UCL, says: "It's not possible to predict precisely when avalanches will happen, but our radar aids understanding of how they behave when they do occur. By penetrating the powder cloud, it can observe the nature and direction of the flow of the 90 per cent of snow that would otherwise remain invisible."

As well as killing more than 150 people worldwide each year, avalanches cause substantial damage and disruption. A range of anti-avalanche protection measures are available, from snow fences, nets, dams and barriers to tree-planting, reinforcement of buildings and the laying out of towns and villages to minimise damage. These measures can all be expensive, however, with the cost of safeguarding one hectare estimated to be around £750,000.   

The insights into avalanche behaviour produced by the new imaging system could ultimately help SLF refine such measures so that they deliver better, more cost-effective protection. Working on the classic 'echo sounder' principle that has underpinned radar ever since its invention in the early 20th century, the system uses an antenna to transmit radio waves and a 1.95 metre receiver array to capture them as they reflect back from the snow.

The power and wavelength of the radio waves maximise their ability to penetrate into the snow as it moves. The system, which has a 30° field of view providing full coverage of an avalanche track, offers greater sensitivity and higher resolution images than any other similar system previously developed. It can work autonomously or can be operated manually over a Virtual Private Network. 

The project has interacted closely with research led by British Antarctic Survey (BAS) and funded by the Natural Environment Research Council (NERC) that has used radar to measure and monitor, with millimetre precision, the melt rates of Antarctic ice shelves – key to understanding how sea levels may rise in future in response to climate change. 

Professor Brennan comments: "Two members of our team spent two months in Antarctica working with BAS, which was invaluable in informing development of our imaging system. Our system is an excellent scientific research tool generating real-world field data that SLF can put to productive and potentially life-and money-saving use in the years ahead."  

Explore further: Remote assessment of avalanche risk

Related Stories

Remote assessment of avalanche risk

May 5, 2015

In cooperation with a Swiss research team, geographers of Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a novel measuring system relying on two different physical methods that promises to enhance forecasting ...

New risk factors for avalanche trigger revealed

April 4, 2014

The amount of snow needed to trigger an avalanche in the Himalayans can be up to four times smaller than in the Alps, according to a new model from a materials scientist at Queen Mary University of London.

An earthquake or a snow avalanche has its own shape

December 20, 2013

Predicting earthquakes or snow avalanches is difficult, but to for instance reduce the related risks it is of high importance to know if an avalanche event is big or small. Researchers from Aalto University in Finland have, ...

Evaluating the link between snowfall and avalanches

February 4, 2015

Ski resorts and researchers could potentially rely on statistics to evaluate the long-term avalanche activity on their slopes with a simple webcam, a weather station, and several years' worth of observations. Researchers ...

Subzero learning environment enabling avalanche research

April 12, 2015

A recent article about avalanche research in Popular Science referred to the effort toward knowing more about the avalanche in its subhead as "snowslide science," and the article was about the interesting lab work going on ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.