MEPhI helps to create memory nanoelements for satellites

September 7, 2016
Credit: National Research Nuclear University

Scientists of MEPhI Institute of functional nuclear electronics ( and the University of Georgia have developed a new technology for creation of magnetic memory elements of nanometer sizes for astronomical and military equipment. The results of work have been published in the Journal of Applied Physics.

The new magnetic elements are iron-nickel alloy triangles with sides of several hundred nanometers. The new have magnetic properties that allow changing the form of the triangular nanostructure – the concavity of the sides and elongation of the tops. Such magnetic nanostructures can function as cells because the state of magnetization in its top is explained by the magnetization of two other tops.

Connection of nanomagnetic structures into a system (bidimensional chains) gives an opportunity to create a logic and memory array in which information readout consists of so-called magnet-tunneling contacts at the nanostructure angles.

The advantages of logic and memory arrays based on magnetic nanostructures are radiation resistance, high stability of information storage and energy efficiency. Their power consumption is about 0.1 microwatt, which is an order less than CMOS transistors.

Nanotriangle logic/ cells have astronomical and military applications, because they confer not only radiation resistance but also have a small size. They can also be used in the domestic sphere, in cell phones and computers, for instance, which will significantly lower energy consumption.

Explore further: Half-a-loaf method can improve magnetic memories

Related Stories

Half-a-loaf method can improve magnetic memories

August 24, 2010

Chinese scientists have shown that magnetic memory, logic and sensor cells can be made faster and more energy efficient by using an electric, not magnetic, field to flip the magnetization of the sensing layer only about halfway, ...

New combination of materials could speeds up computers

September 5, 2016

Researchers at Uppsala University have discovered a new combination of materials that paves the way for faster and more effective storage in electronic devices like computers and smartphones. What researchers discovered is ...

Making the switch, this time with an insulator

September 1, 2016

The growing field of spin electronics - spintronics - tells us that electrons spin like a top, carry angular momentum, and can be controlled as units of power, free of conventional electric current. Nonvolatile magnetic memory ...

Using magnetic permeability to store information

September 10, 2015

Scientists have made promising steps in developing a new magnetic memory technology, which is far less susceptible to corruption by magnetic fields or thermal exposure than conventional memory.

Recommended for you

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...

New imaging technique peers inside living cells

November 16, 2017

To undergo high-resolution imaging, cells often must be sliced and diced, dehydrated, painted with toxic stains, or embedded in resin. For cells, the result is certain death.

The stacked color sensor

November 16, 2017

Red-sensitive, blue-sensitive and green-sensitive color sensors stacked on top of each other instead of being lined up in a mosaic pattern – this principle could allow image sensors with unprecedented resolution and sensitivity ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.