Trapping single atoms in a uniform fashion

September 28, 2016, University of Electro-Communications
Researchers at the University of Electro-Communications in Tokyo have successfully developed a method for creating uniform, shaped optical microarrays for trapping single atoms. The technique may pave the way for new quantum computing applications. Credit: University of Electro-Communications

Single neutral atoms trapped individually in optical microtraps are incredibly useful tools for studying quantum physics, as the atoms then exist in complete isolation from the environment. Arrays of optical microtraps containing single atoms could enable quantum logic devices, quantum information processing, and quantum simulation.

While single atom trapping has already been achieved, there are still many challenges to overcome. One such challenge is making sure each trap holds no more than one atom at a time, and also keeping it there so it won't escape. This requires uniform optical microtraps, which have yet been fully realised.

Now, Ken'ichi Nakagawa and co-workers at the University of Electro-Communications, Tokyo, Japan, together with scientists across Japan and China, have successfully demonstrated an optimization method for ensuring the creation of uniform holographic microtrap arrays to capture single rubidium (87Rb) atoms.

The team generated holograms for red light-tuned microtraps arrays in various shapes including square, honeycomb and ring formations (see image). They combined each hologram with two phase patterns, including a grating pattern which allowed the researchers to separate out the traps from non-diffracted light. A tuned the trap light to the calculated hologram pattern and ensured uniformity of depth across the microtraps.

Nakagawa's team measured the diffracted light intensity with a specialized camera, and monitored the in-trap fluorescence from the Rb atoms; these two 'feedback' methods allowed them to optimize the traps and ensure uniformity. They could also verify the presence of a single atom in each trap more precisely.

Explore further: Quantum computing a step closer to reality

More information: Hikaru Tamura et al. Highly uniform holographic microtrap arrays for single atom trapping using a feedback optimization of in-trap fluorescence measurements, Optics Express (2016). DOI: 10.1364/OE.24.008132

Related Stories

Physicists create nanoscale mirror with only 2000 atoms

September 26, 2016

Mirrors are the simplest means to manipulate light propagation. Usually, a mirror is a macroscopic object composed of a very large number of atoms. In the September 23th issue of the Physical Review Letters, Prof. Julien ...

Ultra-cold atom transport made simple

July 7, 2014

Techniques for controlling ultra-cold atoms travelling in ring traps currently represent an important research area in physics. A new study gives a proof of principle, confirmed by numerical simulations, of the applicability ...

Rubidium atoms used as a refrigerant for ytterbium atoms

November 12, 2015

For many years rubidium has been a workhorse in the investigation of ultracold atoms.  Now JQI scientists are using Rb to cool another species, ytterbium, an element prized for its possible use in advanced optical clocks ...

A little light interaction leaves quantum physicists beaming

August 24, 2015

A team of physicists at the University of Toronto (U of T) have taken a step toward making the essential building block of quantum computers out of pure light. Their advance, described in a paper published this week in Nature ...

Recommended for you

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...

Gravitational waves will settle cosmic conundrum

February 14, 2019

Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.