A new study looks for the cortical conscious network

August 26, 2016 by Ramat Gan
Credit: the hierarchy of the human cortex, Figure 4, New J. Phys. 18 (2016) 083013.

New research published in the New Journal of Physics tries to decompose the structural layers of the cortical network to different hierarchies enabling to identify the network's nucleus, from which our consciousness could emerge.

The is a very complex network, with approximately 100 billion neurons and 100 trillion synapses between the neurons. In order to cope with its enormous complexity and to understand how brain function eventually creates the conscious mind, science uses advanced mathematical tools. Ultimately, scientists want to understand how a global phenomenon such as consciousness can emerge from our neuronal network.

A team of physicists from Bar Ilan University in Israel led by Professor Shlomo Havlin and Professor Reuven Cohen used network theory in order to deal with this complexity and to determine how the structure of the human cortical network can support complex data integration and . The gray area of the human cortex, the neuron cell bodies, were scanned with MRI imaging and used to form 1000 in the cortical network. The white matter of the human cortex, the neuron bundles, were scanned with DTI imaging, forming 15,000 links or edges that connected the network's nodes. In the end of this process, their network was an approximation of the structure of the human cortex.

Previous studies have shown that the human cortex is a network with small world properties, which means that it has many local structures and some shortcuts from global structures that connect faraway areas (similar to the difference between local buses and cross-country trains). The cortex also has many hubs, which are nodes that have a high number of links (like central stations), that are also strongly interconnected between themselves, making it easy to travel between the brain's information highways.

Nir Lahav, the lead author of the study, says, "In order to examine how the structure of the network can support global emerging phenomena like consciousness, we applied a network analysis called K-shell decomposition. This analysis takes into account the connectivity profile of each node, making it easy to uncover different neighborhoods of connections in the cortical network, which we called ."

The most connected neighborhood in the network is termed the network's nucleus. Nir says, "In the process, we peel off different shells of the network to get the most connected area of the network, the nucleus. Until today, scientists were only interested in the network's nucleus, but we found that these different shells can hold important information about how the brain integrates information from the local levels of each node to the entire global network. For the first time, we could build a comprehensive topological model of the cortex."

This topological model reveals that the network's nucleus includes 20 percent of all nodes and that the remaining 80 percent are strongly connected across all of the shells. Interestingly, comparing this topology to that of other networks, such as the internet, noticeable differences are apparent. For instance, in internet network topology, almost 25 percent of the nodes are isolated, meaning they don't connect to any other shells but the nucleus. In the cortical network, however, there are hardly any isolated nodes. It seems that the cortex is much more connected and efficient than the internet.

Credit: Institute of Physics

Looking at all the shells of the cortical network, the authors were able to define the network's hierarchical structure and essentially model how information flows within the network. The structure revealed how shells of low connectivity are nodes that typically perform specific functions like face recognition. From there, the data is transferred to higher, more connected shells that enable additional data integration. This reveals regions of the executive network and working memory. With these areas, researchers can focus on task performance, for example.

The integrated information then 'travels' to the most connected neighborhood of nodes, the nucleus, which spans across several regions of the cortex. According to Nir, "It's an interconnected collective which is densely linked with itself and can perform global functions due to its great number of global structures, which are widespread across the brain."

Which global function might the nucleus serve? The authors suggest the answer is no less than consciousness itself.

"The connection between brain activity and consciousness is still a great mystery," says Nir. The main hypothesis today is that in order to create conscious activity, the brain must integrate relevant information from multiple areas of the network. According to this theory, led by Professor Giulio Tononi from the University of Wisconsin, if the level of integrated information crosses a certain limit, a new and emergent state is entered—consciousness. This model suggests that consciousness depends on both information integration and information segregation. Loosely speaking, consciousness is generated by a "central" network structure with a high capacity for information integration, with the contribution of sub-networks that contain specific and segregated information without being part of the central structure. In other words, certain parts of the brain are more involved than others in the conscious complex of the brain, yet other connected parts still contribute, working quietly outside the conscious complex.

The authors demonstrate how the nucleus and the shells satisfy all of the requirements of these recent consciousness theories. The shells calculate and contribute to without actually being part of the conscious complex, while the nucleus receives relevant from all other hierarchies and integrates it to a unified function using its global interconnected structure. The nucleus could thus be this conscious complex, serving as a platform for consciousness to emerge from the network activity.

When the authors examined the different regions that make up the nucleus, they revealed that, indeed, these regions have been previously associated with conscious activities. For example, structures within the brain's midline, which form the majority of the 's nucleus, were found to be associated with the stream of consciousness, and some researchers, like Professor Georg Northoff from the University of Ottawa, have suggested that these regions are involved with creating our sense of self.

"Now, we need to use this analysis on the whole brain, and not only on the cortex in order to reveal a more exact model of the brain's hierarchy, and later on understand what, exactly, are the neuronal dynamics that lead to such global integration and ultimately ."

Explore further: Neuroscientists show how nerve cells communicate with each other in neural networks

More information: Nir Lahav et al. K-shell decomposition reveals hierarchical cortical organization of the human brain, New Journal of Physics (2016). DOI: 10.1088/1367-2630/18/8/083013

Related Stories

What makes us conscious?

March 16, 2016

Do you think that the machine you are reading this story on, right now, has a feeling of "what it is like" to be in its state?

Abnormal brain interactions harm consciousness

May 2, 2016

Over the past few years, a great amount of scientific research has shown that even when the brain is "at rest" it still works. The brains of healthy people are organized into regions displaying similar activity, called resting-state ...

Network theory sheds new light on origins of consciousness

March 11, 2015

Where in your brain do you exist? Is your awareness of the world around you and of yourself as an individual the result of specific, focused changes in your brain, or does that awareness come from a broad network of neural ...

Recommended for you

Single-photon detector can count to four

December 15, 2017

Engineers have shown that a widely used method of detecting single photons can also count the presence of at least four photons at a time. The researchers say this discovery will unlock new capabilities in physics labs working ...

Real-time observation of collective quantum modes

December 15, 2017

A cylindrical rod is rotationally symmetric - after any arbitrary rotation around its axis it always looks the same. If an increasingly large force is applied to it in the longitudinal direction, however, it will eventually ...

A shoe-box-sized chemical detector

December 15, 2017

A chemical sensor prototype developed at the University of Michigan will be able to detect "single-fingerprint quantities" of substances from a distance of more than 100 feet away, and its developers are working to shrink ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

RobertKarlStonjek
1 / 5 (1) Aug 26, 2016
Cont...
In fact in no cases does an individual not experience opposition within the conscious self to achieving cognitive targets such as those associated with self discipline, concentration and memory, laziness and drug addiction for example.

In the animal world, the snake uses one sense to hunt pray, a different one to kill and a different one again to feed. So even if a mouse that has been poisoned by a snake wonders around dazed and dies right under the snake's head the snake will still follow the scent trail until it finds the mouse at the end of it.

Humans have achieved a higher degree of integration than other species but this represents an advanced form of consciousness, the researchers mentioned here assume that it is a fundamental property and so have the evolution of consciousness entirely backward.

Any model of consciousness should work equally well for single celled animals or, at the very least, for all animals with brains including the mentioned snake.
RobertKarlStonjek
1 / 5 (1) Aug 26, 2016
The researchers would do much better to avoid the word 'conscious' and 'consciousness' and concentrate on specific neuronal and brain functions. They have, if the article is any indication, ranged across several competing consciousness models.

If we take the model used in medicine and some areas of philosophy, that the most fundamental property of consciousness is state of being conscious, scaled from coma through vegetative states to normal arousal and indicated by the individual's ability to productively respond to the environment, then we note, from biology, that there is a very wide range of species that satisfy these criteria but have no brains and in some cases no neuronal network and the case of Paramecium, are but a single cell.

On the collective functioning of the brain to produce a single consciousness, there are numerous examples known to psychology and pathological conditions known to psychiatry where unified consciousness does not occur.
JimD
not rated yet Aug 27, 2016
RobertKarlStonjek, I agree with many of your points. However, I think you're skating around the fundamental problem with consciousness models. Namely, conscious and consciousness are ill-defined concepts.
RobertKarlStonjek
not rated yet Aug 31, 2016
JimD, that was more or less the point of what I was saying, that the concepts are not defined well enough to be used scientifically without very careful qualifications as to what a researcher is actually referring to.

But the word 'Consciousness' is a sexy word that gets publicity, one's paper gets noticed and this all helps to get funding which is why the word is used....science suffers as a result.

What can we say about wimps who would mark down a message to 1/5 and not give their reasons...pathetic individuals abound...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.