New cancer nanomedicine reduces pancreatic tumour growth

August 8, 2016
New cancer nanomedicine reduces pancreatic tumour growth
Nanoparticles. Credit: Thinkstock

Australian cancer researchers have developed a highly promising nanomedicine that could improve treatment for pancreatic cancer – the most deadly cancer in Australia. 

Australian cancer researchers have developed a highly promising technology to deliver gene-silencing drugs to treat pancreatic cancer – the most chemo-resistant and deadly cancer in Australia.

When tested in mice, the new nanomedicine resulted in a 50 per cent reduction in the growth of tumours and reduced the spread of pancreatic cancer.

The UNSW-led research, published in the Biomacromolecules journal, provides new hope for pancreatic , most of whom succumb to the disease within three to six months of diagnosis.

Lead researcher Dr Phoebe Phillips, from UNSW's Lowy Cancer Research Centre, said it was devastating for her clinical colleagues when they had to tell pancreatic cancer patients that the best chemotherapy drug available could prolong life by only 16 weeks.

"A major reason for the lack of response to chemotherapy is that pancreatic tumours have an extensive scar tissue which makes up to 90 per cent of the tumour," Dr Phillips said.

"This scar causes pancreatic cancer cell chemotherapy resistance and is a physical barrier to chemotherapy drug delivery to tumours.

"We recently identified a key promoter of tumour growth, cancer spread and chemo-resistance in pancreatic tumours called βIII-tubulin. Inhibition of this gene resulted in a 50 per cent reduction in and reduced the spread of the cancer in mice," Dr Phillips said.

The problem with therapeutically targeting this gene is that it is difficult to deliver drugs to it. To overcome this problem, the researchers have developed a nanomedicine which consists of a state-of-the-art nanoparticle that can package small RNA molecules (DNA photocopies of cells) and greatly inhibit βIII-tubulin.

The researchers have shown that their novel nanoparticle can deliver therapeutic doses of small RNAs to pancreatic tumours in mice, despite the presence of , and successfully inhibit βIII-tubulin.

"The significance of our nanomedicine technology lies in its potential to inhibit any tumour-promoting gene or a cocktail of genes personalised to the genetic profile of a patient's tumour," Dr Phillips said.

"This work has the potential to develop new therapies to target this drug-resistant cancer and improve the effectiveness of current chemotherapies, which may increase survival and quality of life for patients."

Explore further: Vitamin A may help improve pancreatic cancer chemotherapy

More information: Joann Teo et al. A Rationally Optimized Nanoparticle System for the Delivery of RNA Interference Therapeutics into Pancreatic Tumors in Vivo, Biomacromolecules (2016). DOI: 10.1021/acs.biomac.6b00185

Related Stories

Vitamin A may help improve pancreatic cancer chemotherapy

May 24, 2016

The addition of high doses of a form of vitamin A could help make chemotherapy more successful in treating pancreatic cancer, according to an early study by Queen Mary University of London (QMUL). The promising initial results ...

Targeting pancreatic cancer through signalling

June 14, 2016

Researchers have identified a new way to tailor treatments for patients with pancreatic cancer, one of the most deadly forms of cancer. Currently only five per cent of people with pancreatic cancer survive longer than five ...

Detecting an early biomarker for pancreatic cancer in blood

June 2, 2016

Pancreatic ductal adenocarcinoma is one of the most aggressive and deadliest forms of cancer. Treatment options are limited because symptoms typically do not appear until the disease is advanced and complete surgical resection ...

Recommended for you

Engineers create plants that glow

December 13, 2017

Imagine that instead of switching on a lamp when it gets dark, you could read by the light of a glowing plant on your desk.

Faster, more accurate cancer detection using nanoparticles

December 12, 2017

Using light-emitting nanoparticles, Rutgers University-New Brunswick scientists have invented a highly effective method to detect tiny tumors and track their spread, potentially leading to earlier cancer detection and more ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.