Researchers uncover the mechanism that triggers host plant resistance against parasitic plants

July 29, 2016 by Janna Eberhardt, Universitaet Tübingen
Dodder successfully attacking a painted nettle. By penetrating the host plant stem with specific organs, the haustoria, it withdraws water, carbohydrates and other nutrients out of the host plant. Credit: Ursula Fürst/ZMBP, University of Tübingen

There exist more than 4,500 plant species that live as parasites on other plants. Some of them cause great damage to agriculture, even leading to the complete failure of crops. Researchers working with Dr Markus Albert at the University of Tübingen's Center for Plant Molecular Biology (ZMBP) and collaborators from the Sainsbury Laboratory in Norwich (Professor Cyril Zipfel, Matthew Smoker) have been investigating the ways in which some species defend themselves against such parasites. They looked at various tomato cultivars that can prevent the dodder parasite from latching onto them. The scientists discovered a gene in the tomato that enabled the plant to recognize the dodder and trigger an innate immune mechanism. Up to now, that kind of defense mechanism had only been observed against microbial pathogens, insects and arachnids. The results suggest that it may be possible to better protect crops against plant parasites.

The researchers' study is published in the latest edition of Science.

Dodder is a member of the genus Cuscuta – all of which live as holoparasites on other plants. Without leaves or roots, they wrap themselves around the shoots of mostly herbaceous, dicotyledonous plants, infecting them with penetrating haustoria, special organs that connect to the host's vascular system. They then withdraw water, carbohydrates and other nutrients out of the host. The host is weakened and usually dies without producing fruits or seeds. One of the few resistant tomato cultivars (Solanum lycopersicum) stops the Cuscuta haustoria from getting into its shoots by producing a corklike, woody tissue. Then the dodder dies off due to starvation.

The team of researchers used crossings of cultivated tomato with a wild tomato (Solanum pennellii), in order to find and isolate the dodder-resistance gene. "This gene encodes a receptor protein that localizes to the surface of the tomato cell," says Markus Albert. "And it recognizes a molecular pattern of the dodder." Once the receptor has received the signal that the parasite has arrived, it works like a molecular switch, setting off the tomato plant's immune response. That leads to increased resistance by the host. "The recognizes plant parasites much in the same way it perceives intruding bacteria," Albert explains.

This is surprising, because the parasite and the host – as plants – are close to one another from the evolutionary point of view, "at least in comparison with the plant-microbe and plant-insect models," he says. This is the first time a mechanism has been discovered whereby a plant recognizes another plant – or its molecular patterns – as foreign. This brings a new approach into the basic research into understanding the dialogue between plants at the cellular level. "This discovery also gives plant researchers new perspectives when it comes to creating new cultivars that are more resistant to parasitic ," Albert says.

Explore further: Plant Parasite 'Wiretaps' Host

More information: V. Hegenauer et al. Detection of the plant parasite Cuscuta reflexa by a tomato cell surface receptor, Science (2016). DOI: 10.1126/science.aaf3919

Related Stories

Plant Parasite 'Wiretaps' Host

July 30, 2008

A parasitic plant that sucks water and nutrients from its plant host also taps into its communications traffic, a new report finds. The research could lead to new ways to combat parasites that attack crop plants.

Hitting back at 'wiretapping' parasite

July 24, 2012

Dodder vines are parasitic plants that suck water, nutrients and information from other plants as they spread over them. Plant biologists at the University of California, Davis, have now shown that they can make plants resistant ...

Increasing crop resistance to pathogens

October 14, 2015

We all know that animals have an immune system - but plants have systems to fight infection too. Plant cells have receptor proteins which bind with parts of a pathogen. These receptor proteins are located on the surface of ...

Recommended for you

How birds and insects reacted to the solar eclipse

November 14, 2018

A team of researchers with Cornell University and the University of Oxford has found that birds and insects reacted in some surprising ways to the 2017 U.S. total solar eclipse. In their paper published in the journal Biology ...

Symbiosis a driver of truffle diversity

November 14, 2018

While the sight of black or white truffle being shaved over on pasta is generally considered a sign of dining extravagance, they play an important role in soil ecosystem services. Truffles are the fruiting bodies of the ectomycorrhizal ...

Gene-edited food is coming, but will shoppers buy?

November 14, 2018

The next generation of biotech food is headed for the grocery aisles, and first up may be salad dressings or granola bars made with soybean oil genetically tweaked to be good for your heart.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.