Bowtie-shaped nanostructures may advance the development of quantum devices

July 5, 2016, Weizmann Institute of Science
A bowtie-shaped nanoparticle made of silver with a trapped semiconductor quantum dot (indicated by the red arrow). Credit: Weizmann Institute of Science

Bowtie-shaped nanoparticles made of silver may help bring the dream of quantum computing and quantum information processing closer to reality. These nanostructures, created at the Weizmann Institute of Science and described recently in Nature Communications, greatly simplify the experimental conditions for studying quantum phenomena and may one day be developed into crucial components of quantum devices.

The research team led by Prof. Gilad Haran of Weizmann's Chemical Physics Department - postdoctoral fellow Dr. Kotni Santhosh, Dr. Ora Bitton of Chemical Research Support and Prof. Lev Chuntonov of the Technion-Israel Institute of Technology - manufactured two-dimensional bowtie-shaped silver nanoparticles with a minuscule gap of about 20 nanometers (billionths of a meter) in the center. The researchers then dipped the "bowties" in a solution containing quantum dots, tiny semiconductor particles that can absorb and emit light, each measuring six to eight nanometers across. In the course of the dipping, some of the quantum dots became trapped in the bowtie gaps.

Under exposure to light, the trapped dots became "coupled" with the bowties - a scientific term referring to the formation of a mixed state, in which a photon in the bowtie is shared, so to speak, with the quantum dot. The coupling was sufficiently strong to be observed even when the gaps contained a single quantum dot, as opposed to several. The bowtie nanoparticles could thus be prompted to switch from one state to another: from a state without coupling to quantum dots, before exposure to light, to the mixed state characterized by strong coupling, following such exposure.

Therefore, the ability to control the coupling of quantum dots may one day be employed in the manufacture of switches for computing or encryption devices relying on , that is, those operating at the level of photons and single quantum systems, such as atoms, molecules or quantum dots. Because such phenomena open up possibilities unavailable on the macroscopic scale - for example, performing multiple computations simultaneously - are expected to be vastly more powerful than today's electronic computers and encryption systems.

Says Prof. Haran: "We've made a first step toward creating quantum switches using our coupling method. Much research needs to be done before the method can be incorporated into actual devices, but as a matter of principle, our system is relatively easy to generate and, most importantly, can function at room temperature. We are currently working to fabricate even smaller bowtie particles and to render the coupling stronger and reversible."

The Weizmann scientists managed to design their bowtie system thanks to advances in nanotechnology - including electron beam lithography, used to fabricate the bowties and to facilitate the introduction of quantum dots into their gaps - and the advent of computational programs providing data analysis that previously required a massive effort on the part of theoreticians. They also relied on the recently improved understanding of electron oscillations triggered by light in metals, which constitute the physical source of the coupling between the bowtie and the quantum dots: Such oscillations are known to be strongest on the metal surface. In the new bowtie-shaped particles, the electromagnetic field generated by these oscillations is extremely concentrated because it is focused to the central, narrow portion of the bowtie, much as light is concentrated when focused into a narrow beam.

The high concentration ensures tight control over the coupling, and this control, in turn, is essential for potential future quantum applications. None of the systems built in the past to study quantum interactions between light and matter operated on such a small scale or were able to reduce experiments to the level of individual , as was done in the Weizmann study.

Explore further: Superfast light source made from artificial atom

More information: Kotni Santhosh et al. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit, Nature Communications (2016). DOI: 10.1038/ncomms11823

Related Stories

Superfast light source made from artificial atom

April 26, 2016

All light sources work by absorbing energy – for example, from an electric current – and emit energy as light. But the energy can also be lost as heat and it is therefore important that the light sources emit the light ...

Catching more of the sun

April 4, 2016

Combining quantum dots and organic molecules can enable solar cells to capture more of the sun's light.

Researchers develop ideal single-photon source

September 7, 2015

With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream ...

Coupling of Single Quantum Dots to Smooth Metal Films

July 20, 2009

Scientists at Argonne National Laboratory's CNM Nanophotonics Group have measured how light emission from individual colloidal semiconductor nanocrystals, or quantum dots, is modified when in proximity to smooth metal films. ...

Shining a light on quantum dots measurement

January 15, 2015

Due to their nanoscale dimensions and sensitivity to light, quantum dots are being used for a number of bioimaging applications including in vivo imaging of tumor cells, detection of biomolecules, and measurement of pH changes.

Recommended for you

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

Researchers report new light-activated micro pump

March 11, 2019

Even the smallest mechanical pumps have limitations, from the complex microfabrication techniques required to make them to the fact that there are limits on how small they can be. Researchers have announced a potential solution—a ...

Investigating the motility of swimming Euglena

March 8, 2019

Some species of Euglenids, a diversified family of aquatic unicellular organisms, can perform large-amplitude, elegantly coordinated body deformations. Although this behavior has been known for centuries, its function is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.