Unexpected excess of giant planets in star cluster

June 17, 2016, ESO
This artist’s impression shows a hot Jupiter planet orbiting close to one of the stars in the rich old star cluster Messier 67, in the constellation of Cancer (The Crab). Astronomers have found far more planets like this in the cluster than expected. This surprise result was obtained using a number of telescopes and instruments, among them the HARPS spectrograph at ESO’s La Silla Observatory in Chile. The denser environment in a cluster will cause more frequent interactions between planets and nearby stars, which may explain the excess of hot Jupiters. Credit: ESO/L. Calçada

An international team of astronomers have found that there are far more planets of the hot Jupiter type than expected in a cluster of stars called Messier 67. This surprising result was obtained using a number of telescopes and instruments, among them the HARPS spectrograph at ESO's La Silla Observatory in Chile. The denser environment in a cluster will cause more frequent interactions between planets and nearby stars, which may explain the excess of hot Jupiters.

A Chilean, Brazilian and European team led by Roberto Saglia at the Max-Planck-Institut für extraterrestrische Physik, in Garching, Germany, and Luca Pasquini at ESO, has spent several years collecting high-precision measurements of 88 stars in Messier 67. This open star cluster is about the same age as the Sun and it is thought that the Solar System arose in a similarly dense environment.

The team used HARPS, along with other instruments, to look for the signatures of giant planets on short-period orbits, hoping to see the tell-tale "wobble" of a star caused by the presence of a massive object in a close orbit, a kind of planet known as a hot Jupiters (en.wikipedia.org/wiki/Hot_Jupiter). This hot Jupiter signature has now been found for a total of three stars in the cluster alongside earlier evidence for several other planets.

A hot Jupiter is a giant exoplanet with a mass of more than about a third of Jupiter's mass. They are "hot" because they are orbiting close to their parent stars, as indicated by an orbital period (their "year") that is less than ten days in duration. That is very different from the Jupiter we are familiar with in our own Solar System, which has a year lasting around 12 Earth- years and is much colder than the Earth.

"We want to use an open star cluster as laboratory to explore the properties of exoplanets and theories of planet formation", explains Roberto Saglia. "Here we have not only many stars possibly hosting planets, but also a dense environment, in which they must have formed."

The study found that hot Jupiters are more common around stars in Messier 67 than is the case for stars outside of clusters. "This is really a striking result," marvels Anna Brucalassi, who carried out the analysis. "The new results mean that there are hot Jupiters around some 5% of the Messier 67 stars studied—far more than in comparable studies of stars not in clusters, where the rate is more like 1%."

Astronomers think it highly unlikely that these exotic giants actually formed where we now find them, as conditions so close to the parent star would not initially have been suitable for the formation of Jupiter-like planets. Rather, it is thought that they formed further out, as Jupiter probably did, and then moved closer to the parent star. What were once distant, cold, are now a good deal hotter. The question then is: what caused them to migrate inwards towards the star?

There are a number of possible answers to that question, but the authors conclude that this is most likely the result of close encounters with neighbouring stars, or even with the planets in neighbouring solar systems, and that the immediate environment around a can have a significant impact on how it evolves.

In a cluster like Messier 67, where are much closer together than the average, such encounters would be much more common, which would explain the larger numbers of hot Jupiters found there.

Co-author and co-lead Luca Pasquini from ESO looks back on the remarkable recent history of studying planets in clusters: "No hot Jupiters at all had been detected in open clusters until a few years ago. In three years the paradigm has shifted from a total absence of such —to an excess!"

Explore further: First planet found around solar twin in star cluster

More information: This research was presented in a paper entitled "Search for giant planets in M67 III: excess of Hot Jupiters in dense open clusters", by A. Brucalassi et al., to appear in the journal Astronomy & Astrophysics. arxiv.org/abs/1606.05247

Related Stories

First planet found around solar twin in star cluster

January 15, 2014

Astronomers have used ESO's HARPS planet hunter in Chile, along with other telescopes around the world, to discover three planets orbiting stars in the cluster Messier 67. Although more than one thousand planets outside the ...

Two 'b''s in the Beehive

August 15, 2012

As astronomers near the 800 mark for confirmed extra solar planets, it seems that notable milestones are becoming fewer and further between. Multi-planet systems aren’t even worth mentioning. Planets less massive than ...

Investigating the mystery of migrating 'hot Jupiters'

March 29, 2016

The last decade has seen a bonanza of exoplanet discoveries. Nearly 2,000 exoplanets—planets outside our solar system—have been confirmed so far, and more than 5,000 candidate exoplanets have been identified. Many of ...

'Hot Jupiters' provoke their own host suns to wobble

September 11, 2014

Blame the "hot Jupiters." These large, gaseous exoplanets (planets outside our solar system) can make their suns wobble when they wend their way through their own solar systems to snuggle up against their suns, according ...

Some giant planets in other systems most likely to be alone

May 7, 2012

In the search for Earth-like planets, it is helpful to look for clues and patterns that can help scientist narrow down the types of systems where potentially habitable planets are likely to be discovered. New research from ...

Recommended for you

Birth of massive black holes in the early universe revealed

January 23, 2019

The light released from around the first massive black holes in the universe is so intense that it is able to reach telescopes across the entire expanse of the universe. Incredibly, the light from the most distant black holes ...

Astronomers discover an unusual nuclear transient

January 23, 2019

An international group of astronomers has detected an unusual nuclear transient in the nucleus of a weakly active galaxy. The new transient was identified by the OGLE-IV Transient Detection System and received designation ...

Scientist sheds light on Titan's mysterious atmosphere

January 23, 2019

A new Southwest Research Institute study tackles one of the greatest mysteries about Titan, one of Saturn's moons: the origin of its thick, nitrogen-rich atmosphere. The study posits that one key to Titan's mysterious atmosphere ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Tuxford
1 / 5 (4) Jun 17, 2016
Here we have not only many stars possibly hosting planets, but also a dense environment, in which they must have formed.

More confused merger maniacs. Never ends.
Again the maniacs have it backwards. The hot Jupiters are formed near their parents, who give birth. And in a dense region of the cluster, the process is accelerated, since more dense regions cause more accelerated creation of new matter within the cores of their parents.

Really simple. Just need to consider LaViolette's model, which predicts these observations. Or, Merger Mania Forever! Long live the maniacs and their favorite fantasy!
Tuxford
1 / 5 (1) Jun 19, 2016
If any are interested in further explanation, you can start with my comments years ago hereunder:
http://phys.org/n...ter.html
http://phys.org/n...ars.html
Nik_2213
5 / 5 (2) Jun 19, 2016
Will this excess of 'Hot Jupiters' soon perish in flames as their systems evolve ??
===
"... accelerated creation of new matter..." ??
Sorry, either your terminology is sadly loose, or you've rediscovered Hoyle's 'Steady State' hypothesis which fell to the 'Big Bang'...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.