Scientists amplify light using sound on a silicon chip

June 13, 2016, Yale University
Yale scientists have found a way to amplify the intensity of light waves on a silicon microchip. Credit: Yale University

Yale scientists have found a way to greatly boost the intensity of light waves on a silicon microchip using the power of sound.

Writing in the journal Nature Photonics, a team led by Peter Rakich describes a new waveguide system that harnesses the ability to precisely control the interaction of light and sound waves. This work solves a long-standing problem of how to utilize this interaction in a robust manner on a chip as the basis for powerful new signal-processing technologies.

The prevalence of in today's technology makes the new system particularly advantageous, the researchers note. "Silicon is the basis for practically all microchip technologies," said Rakich, who is an assistant professor of applied physics and physics at Yale. "The ability to combine both light and sound in silicon permits us to control and process information in new ways that weren't otherwise possible."

Rakich said combining the two capabilities "is like giving a UPS driver an amphibious vehicle—you can find a much more efficient route for delivery when traveling by land or water."

These opportunities have motivated numerous groups around the world to explore such hybrid technologies on a silicon chip. However, progress was stifled because those devices weren't efficient enough for practical applications. The Yale group lifted this roadblock using new device designs that prevent light and sound from escaping the circuits.

"Figuring out how to shape this interaction without losing amplification was the real challenge," said Eric Kittlaus, a graduate student in Rakich's lab and the study's first author. "With precise control over the light-sound interaction, we will be able to create devices with immediate practical uses, including new types of lasers."

The researchers said there are commercial applications for the technology in a number of areas, including fiber-optic communications and signal processing. The system is part of a larger body of research the Rakich lab has conducted for the past five years, focused on designing new microchip technologies for light.

Heedeuk Shin, a former member of the Rakich lab who is now a professor at the Pohang University of Science and Technology in Korea, is the study's other co-author. "We're glad to help advance these new technologies, and are very excited to see what the future holds," Shin said.

Explore further: A new way to control information by mixing light and sound

More information: Large Brillouin amplification in silicon, Nature Photonics, DOI: 10.1038/nphoton.2016.112

Related Stories

Interaction between light and sound in nanoscale waveguide

February 17, 2015

Scientists from Ghent University and imec announce today that they demonstrated interaction between light and sound in a nanoscale area. Their findings elucidate the physics of light-matter coupling at these scales – and ...

Recommended for you

Understanding the building blocks for an electronic brain

October 22, 2018

Computer bits are binary, with a value of zero or one. By contrast, neurons in the brain can have many internal states, depending on the input that they receive. This allows the brain to process information in a more energy-efficient ...

Researchers study interactions in molecules using AI

October 19, 2018

Researchers from the University of Luxembourg, Technische Universität Berlin, and the Fritz Haber Institute of the Max Planck Society have combined machine learning and quantum mechanics to predict the dynamics and atomic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.