Engineers create a better way to boil water—with industrial, electronics applications

May 4, 2016, Oregon State University
Researchers at Oregon State University using new technology to control the formation and release of bubbles illustrate it with the letters "OSU" being printed on a substrate. Credit: Oregon State University

Engineers at Oregon State University have found a new way to induce and control boiling bubble formation, that may allow everything from industrial-sized boilers to advanced electronics to work better and last longer.

Advances in this technology have been published in Scientific Reports and a patent application filed.

The concept could be useful in two ways, researchers say - either to boil water and create steam more readily, like in a boiler or a clothing iron; or with a product such as an electronics device to release more readily while working at a cooler temperature.

"One of the key limitations for electronic devices is the heat they generate, and something that helps dissipate that heat will help them operate at faster speeds and prevent failure," said Chih-hung Chang, a professor of electrical engineering in the OSU College of Engineering. "The more bubbles you can generate, the more cooling you can achieve.

"On the other hand, if you want to create steam at a lower surface temperature, this approach should be very useful in boilers and improve their efficiency. We've already shown that it can be done on large surfaces and should be able to scale up in size to commercial use."

The new approach is based on the use of piezoelectric inkjet printing to create hydrophobic polymer "dots" on a substrate, and then deposit a hydrophilic zinc oxide nanostructure on top of that. The zinc oxide nanostructure only grows in the area without dots. By controlling both the hydrophobic and hydrophilic structure of the material, can be precisely controlled and manipulated for the desired goal.

This technology allows researchers to control both boiling and condensation processes, as well as spatial bubble nucleation sites, bubble onset and departure frequency, heat transfer coefficient and critical heat flux for the first time.

In electronics, engineers say this technology may have applications with some types of solar energy, advanced lasers, radars, and power electronics - anywhere it's necessary to dissipate high heat levels.

In industry, a significant possibility is more efficient operation of the steam boilers used to produce electricity in large electric generating facilities.

Explore further: New research introduces 'pause button' for boiling

More information: Chang-Ho Choi et al, Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces, Scientific Reports (2016). DOI: 10.1038/srep23760

Related Stories

New research introduces 'pause button' for boiling

February 23, 2016

Gather your patience and put the old "a watched pot never boils" saying to the test. The experience might rival watching paint dry, but of course the water will eventually begin to boil. When it does, you'll see a flurry ...

'Bubble piano' plays bubbles in sync with Beethoven symphony

November 3, 2015

(Phys.org)—Calling it an "Ode to Bubbles," MIT researchers have produced bubbling in sync with Beethoven's Symphony No. 9: Ode to Joy on a surface resembling a piano keyboard. The performance demonstrates the researchers' ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.