How to hide secret messages using fizzy drinks

May 4, 2016 by Mark Lorch, The Conversation
Credit: Shutterstock

Next time you see someone spilling a drink in a bar, you could actually be witnessing a spy secretly decoding an encrypted message. This might sound like something from a Bond movie. But a team from Israel has used some rather niffy chemistry to come up with a way to use common chemicals such as cola as the encryption key to code and decode hidden messages.

Spies have long tried to make coded or encrypted messages even more secure by hiding them in something seemingly innocuous, from the secret wax writing tablet devised by Demaratus, King of Sparta, to the "lemon juice spies" of World War I. This practice is known as steganography.

In the case of invisible ink, the chemistry is quite simple. Write the message in juice and when it dries the text disappears. But if you heat it up, the acids from the lemon react with the sugars to caramelise them, turning them brown. And, hey presto, the message is revealed.

The Israeli team of researchers from the Weizmann Institute of Science have continued this tradition with some chemistry that is ingenious enough for any spy movie. Their method, published in the journal Nature Communications, is complex to devise but simple to use, and combines encryption, steganography and password protection.

It all rests on fluorescent molecules that can be made to give off different wavelengths of light when they come into contact with certain chemicals. Measuring the wavelengths gives you a code that you then need to decrypt to read the message. The scientists built the molecules that contain the code in their lab but the chemicals could be familiar products such as a particular , instant coffee or mouthwash.

How it works

To encode the message, you use a simple cipher, where each letter is replaced with another symbol, or in this case with a set of numbers. So if your message was "open sesame", to encode the word "open" you could use:

O = 4350

P = 4650

E = 1350

N = 4050

You also assign a wavelength of light (measured in nanometers, nm) to each letter.

O = 500nm

P = 520nm

E = 540nm

N = 560nm

You then put the molecule in your chosen chemical, for example cola, and measure the amount of light that it gives off at each wavelength. (This can be done with a simple and cheap hand-held device, although 007 would probably have the function built into his watch.)

Fluorescence is measured with arbitrary units, so to get the same numbers for both the coding and decoding instruments they must be set up the same way, which actually adds another layer of security. Adding the value of this measurement to the cipher numbers gives you your final code. So if you measure 689 at 500nm, you add this number to 4350, giving a final value of 5039 for the letter O.

Finally, you transmit the numbers and the fluorescent molecule to whomever you want to read your message. The molecule could be concealed by drying it onto a letter, for example. All the recipient would need to do is place the letter in the correct brand of cola and measure the light released to decode the message. The encryption is specific to the chemical you've used to create it. So if you tried to decode the message using mouthwash rather than cola, you'd get the wrong values and the resulting letters wouldn't make any sense.

Added protection

The Israeli team have also included a neat way to password-protect the message by making the light given off by the molecule dependent on the order in which you add other chemicals to it. So you can get a different by adding mouthwash then cola rather than the other way round.

The whole system may seem rather complex, but the research team have tested it with untrained volunteers and shown that with a few minutes instruction it is really quite easy to use.

So look a bit closer next time you notice someone spill their coffee on some papers (especially if they have a high tech watch on) … they might just be decoding a secret message.

Explore further: Embedding spy secrets in the hard drive fragments

More information: Tanmay Sarkar et al. Message in a molecule, Nature Communications (2016). DOI: 10.1038/ncomms11374

Related Stories

Embedding spy secrets in the hard drive fragments

April 26, 2011

( -- A new way to hide your secrets has been created, which is good news for both the spies and the generally duplicitous regular people of the world. This new system, instead of relying on traditional methods ...

Telegram issues $200,000 in Bitcoins challenge to crack code

December 20, 2013

( —Anyone able to crack the encryption code of Telegram's message text wins a handsome award, but it needs to be by Telegram's rules. To win the money, you need to decipher the message, find the secret email address, ...

Steganography is no laughing matter

March 12, 2013

It is possible to hide secret messages in simple jokes, according to US research published in the latest issue of the International Journal of Security and Networks.

Recommended for you

Woman struck and killed by self-driving Uber vehicle

March 19, 2018

A self-driving Uber vehicle struck and killed a pedestrian in a Phoenix suburb in the first fatality involving a fully autonomous test vehicle, prompting the ride-hailing company Monday to suspend all road-testing of such ...

1 in 3 Michigan workers tested opened fake 'phishing' email

March 16, 2018

Michigan auditors who conducted a fake "phishing" attack on 5,000 randomly selected state employees said Friday that nearly one-third opened the email, a quarter clicked on the link and almost one-fifth entered their user ...

Origami-inspired self-locking foldable robotic arm

March 15, 2018

A research team of Seoul National University led by Professor Kyu-Jin Cho has developed an origami-inspired robotic arm that is foldable, self-assembling and also highly-rigid. (The researchers include Suk-Jun Kim, Dae-Young ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.