Image: Models of Proba-3 designs

May 4, 2016, European Space Agency
Credit: ESA–G. Porter

The design evolution of ESA's Proba-3 double satellite is shown by this trio of 3D-printed models, each pair – from left to right – produced after successive development milestones.

"These paired models, 3D printed in plastic, were not made for show," explains Agnes Mestreau-Garreau, ESA's project manager.

"Instead, they're used almost daily. Because Proba-3 will be the first precision formation-flying mission – with the two satellites flying in tandem– these models help the team to visualise their orientation, as well as to explain the mission easily to people. So the models have ended up somewhat battered as a result.

"The first model set was printed after our System Requirements Review, followed by our Preliminary Design Review and now Mission Consolidation Milestone – with consequent changes in mission mass, volume and design details."

The latest member of ESA's experimental Proba minisatellite family, Proba-3's paired satellites will manoeuvre relative to each other with millimetre and fraction-of-a-degree precision, intended to serve as the virtual equivalent of a giant structure in space and so open up a whole new way of running space missions.

As has become traditional with Proba missions, the success of Proba-3's technology will be proven through acquiring high-quality scientific data. In this case, the smaller 'occulter' satellite will blot out the Sun's fiery disc as viewed by the larger 'coronagraph' satellite, revealing mysterious regions of our parent star's ghostly 'corona', or outer atmosphere.

When in Sun-observing mode, the two satellites will maintain formation exactly 150 m apart, lined up with the Sun so the occulter casts a shadow across the face of the coronagraph, blocking out solar glare to come closer to the Sun's fiery surface than ever before, other than during frustratingly brief terrestrial solar eclipses.

The challenge is in keeping the satellites safely controlled and correctly positioned relative to each other. This will be accomplished using various new technologies, including bespoke formation-flying software, GPS information, intersatellite radio links, startrackers, and optical visual sensors and optical metrologies for close-up manoeuvring.

Fifteen ESA Member States are participating in the Proba-3 consortium, with SENER in Spain as prime contractor for the satellite platforms and Centre Spatial de Liège in Belgium as prime contractor for the coronagraph.

"This grouping includes several of the newer ESA Member States, including the Czech Republic, Poland and Romania," adds Agnes.

"It is a strength of this kind of small but ambitious mission that new entrants to the space sector can find important industrial roles to play on a more flexible basis than in some larger-scale programmes."

Proba-3's next milestone will be the Payload Critical Design Review for its coronagraph, expected in the autumn followed by the System Critical Design Review for the . The two satellites will be stacked together for launch in 2019 before separating in orbit.

Explore further: Proba-3 double-satellite nearer to space

Related Stories

Proba-3 double-satellite nearer to space

December 9, 2014

A pair of satellites flying in close formation to cast an artificial eclipse is now being turned into space-ready reality by ESA's industrial partners.

Astronaut plus Proba minisats snap solar eclipse

March 20, 2015

As today's partial solar eclipse crossed Europe, it was also visible from space. ESA's Proba-2 captured a near-total eclipse from orbit, at the same time as its sister minisatellite Proba-V peered down to snap the shadow ...

Image: Uluru imaged by Proba-1 HRC

January 14, 2016

Uluru/Ayers Rock in the Australian outback, imaged from 600 km away by the smallest camera on one of ESA's smallest satellites – the technology demonstrator turned-operational Earth-observing mission Proba-1.

Image: Proba-1 images Ice station Svalbard

April 21, 2016

Long shadows cast across the snow give a frosty view of the covered domes of Europe's most northerly ground station, as seen by the smallest camera on ESA's veteran Proba-1 minisatellite.

Image: Proba-2 captures partial solar eclipse

September 16, 2015

ESA's Sun-watching Proba-2 satellite experienced three partial solar eclipses on 13 September 2015. On Earth, a single partial eclipse occurred over South Africa, the southern Indian Ocean and Antarctica.

Recommended for you

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.