Cuing environmental responses in fungi

May 26, 2016, DOE/Joint Genome Institute
This is Phycomyces fungi, showing sporangiophores (fruiting bodies) in the wild type and color mutants. Credit: Tamotsu Ootaki

Fungi can sense environmental signals and react accordingly, changing their development, direction of growth, and metabolism. Sensory perception lies at the heart of adaptation to changing conditions, and helps fungi to improve growth and recycle organic waste, and to know when and how to infect a plant or animal host. New results based on characterizing and then conducting a comparative analysis of two genome sequences published online May 26, 2016 in the journal Current Biology shed new light on the evolution of sensory perception in fungi.

For the study, researchers sequenced and annotated Mucoromycotina genomes, specifically those of Phycomyces blakesleeanus and its relative Mucor circinelloides. The work was led by researchers at the U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science User Facility, in collaboration with scientists from 31 research centers and universities from 13 countries, and coordinated by scientists from the University of Seville in Spain. Capturing the genomic variation of fungi allows researchers to build a foundation for translating their genomic potential into practical applications. For example, understanding the mechanisms by which these environmental cues are sensed could provide insights on how some fungi can change their growth patterns to act as pathogens rather than benign organisms.

Understanding fungal metabolism

"Very little is known about basal fungi such as Mucoromycotina and genomics may be the most efficient way to understand their metabolism," said DOE JGI Fungal Genomes program head Igor Grigoriev of this project, which was done as part of a 2006 Community Science Program project. "Many members of this phyla show very high sensitivity to , which when understood could be used for natural control of some of these metabolic processes. The high capacity for accumulating lipids in Mucor circinelloides, for example, may have biofuels applications."

The team found that both species had undergone whole , a rare occurrence in fungi. The genome duplication led to an expansion of gene families and the development of specialized genes, providing new proteins that have enabled these fungi to refine the way they perceive signals from the environment to regulate their growth and development.

Evolution of sensory perception

Biologists have been fascinated for well over a century by the finely-tuned sensory responses of the sporangiophores of P. blakesleeanus. The sporangiophore is a long, rapidly growing giant cell with many nuclei that responds to light, gravity, touch, and even the mere presence of nearby objects. These "spore carriers" are special aerial hyphae that grow into the air for several centimeters and disperse the spores formed at their tip. P. blakesleeanus approximate the sensitivity of the human eye to both dim light of stars at night, and the luster of mid-day in bright sunlight.

"Phycomyces blakesleeanus is best known because it was studied by Nobel laureate Max Delbrück, who recognized its potential as a model organism for the study of sensory perception," noted University of Seville researcher Luis Corrochano, the study's first author and coordinator of the project. "Delbrück was attracted by the elegant simplicity of the behavior of the fruiting body from P. blakesleeanus that can react to light and other signals from the environment, including gravity, wind and adjacent objects by changing its direction of growth." Fittingly, the researchers dedicated this study to Delbrück's memory.

Mucor circinelloides, a related fungus, has similar environmental responses, and sometimes also acts as a human pathogen. The genome sequences of Phycomyces and Mucor provide evidence that an ancient genome duplication yielded new genes to expand signal transduction pathways and improve the mechanisms for sensing light and other signals in this group of . For example, the team found that exposure to light produced massive changes in gene regulation in different fungal tissues and hypothesized that the refined response to light is a consequence of gene duplication and specialization after whole genome duplication. These results advance understanding the role of genome dynamics in the evolution of which, in turn, could provide leads to genes and pathways useful for understanding fungal adaptation and for accelerating the breakdown of biomass for bioenergy.

Explore further: Genome sequences of early-diverging fungi help track origins of white rot fungi

Related Stories

A window into fungal endophytism

April 5, 2016

Researchers sequenced a fungal endophyte of rubber trees and compared its genome to 36 other fungi, focusing on genes that are crucial to host-fungus interactions.

Getting a jump on plant-fungal interactions

July 29, 2014

Fungal plant pathogens may need more flexible genomes in order to fully benefit from associating with their hosts. Transposable elements are commonly found with genes involved in symbioses.

Hijacked cell division helped fuel rise of fungi

May 10, 2016

A new study finds that the more than 90,000 species of mushrooms, molds, yeasts and other fungi found everywhere in the soil, water and air may owe their abilities to grow, spread, and even cause disease to an opportunistic ...

How yeast formations got started

August 15, 2014

Researchers conducted a comparative analysis of nearly 60 fungal genomes to determine the genetic traits that enabled the convergent evolution of yeasts.

Retracing the roots of fungal symbioses

February 23, 2015

With apologies to the poet John Donne, and based on recent work from the U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science user facility, it can be said that no plant is an island, entire ...

Recommended for you

Researchers come face to face with huge great white shark

January 18, 2019

Two shark researchers who came face to face with what could be one of the largest great whites ever recorded are using their encounter as an opportunity to push for legislation that would protect sharks in Hawaii.

Why do Hydra end up with just a single head?

January 18, 2019

Often considered immortal, the freshwater Hydra can regenerate any part of its body, a trait discovered by the Geneva naturalist Abraham Trembley nearly 300 years ago. Any fragment of its body containing a few thousands cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.