Applying Zipf's Law to galaxies

April 18, 2016, Harvard-Smithsonian Center for Astrophysics
Applying Zipf's Law to galaxies
A schematic illustration of Zipf's Law for galaxies or cities. On the left is a simulated population distribution with darker spots indicating higher densities; on the right, in pink, are the locations where the population density exceeds some critical value. The distribution of pink clusters agrees with Zipf's Law. Credit: Lin and Loeb, 2016

In the last century, the linguist George Zipf noticed that the second most common word in English ("of") was used about half as often as the most common word ("the"), the third most common word ("and") occurred about one-third as often, and so on. This curious behavior, that the frequency of any word is inversely proportional to its ranking in the list of words, became known as Zipf's Law.

Others had noticed the same behavior for the populations of cities, namely, that the second most populous city had roughly half the population of the most populous city, the third most populous city had one-third the population, and so on. Scientists studying the detection of faint signals in a background of noise also began to notice a similar effect, with most systems having a component of noise whose intensity varied inversely with the frequency, so-called "one-over-f" noise. Theoretical statistical analyses have found many other cases in which Zipf's Law, or close approximations to it, could result from quasi-random distributions of the element being considered, whether words or cities. There are many slight deviations, however, and no consensus exists on the origin of Zipf's Law.

Galaxies form when the density of matter exceeds some critical value. CfA astronomers Henry Lin, a Harvard undergraduate, and Avi Loeb noted that, like galaxies, cities also might be thought of as forming once their populations exceeded some critical value, with the larger the population, the larger the city. Since Zipf's Law applied to cities, they investigated whether it might also apply to galaxies, and why this might be the case. Rather than focusing on how the law emerges from specific situations, they argue that it occurs naturally in all statistical systems with two key properties: a two-dimensional geometry (galaxies are seen projected onto the two-dimensional plane of the sky) and a clustering behavior that is independent of size ("scale-invariance") so that a small region looks the same as a large region. The scientists show mathematically that with these two characteristics, a Zipf-Law behavior naturally emerges. (Of course for some systems, like words, different reasons may be responsible for producing a Zipf's Law character.)

The new theory can derive Zipf's Law and successfully predict population density fluctuations.

Explore further: Surprising mathematical law tested on Project Gutenberg texts

More information: Henry W. Lin et al. Zipf's law from scale-free geometry, Physical Review E (2016). DOI: 10.1103/PhysRevE.93.032306

Related Stories

Surprising mathematical law tested on Project Gutenberg texts

February 22, 2016

Zipf's law in its simplest form, as formulated in the thirties by American linguist George Kingsley Zipf, states surprisingly that the most frequently occurring word in a text appears twice as often as the next most frequent ...

Physicists eye neural fly data, find formula for Zipf's law

August 5, 2014

Physicists have identified a mechanism that may help explain Zipf's law – a unique pattern of behavior found in disparate systems, including complex biological ones. The journal Physical Review Letters is publishing their ...

Linguists to re-think reason for short words

January 25, 2011

(PhysOrg.com) -- Linguists have thought for many years the length of words is related to the frequency of use, with short words used more often than long ones. Now researchers in the US have shown the length is more closely ...

Ambiguous words probably make communicating easier

June 4, 2014

It's a good thing some words have many meanings—ambiguous words actually make communication easier and may be an inevitable consequence of a language's evolution, according to a new SFI working paper by External Professor ...

Recommended for you

Exploring planetary plasma environments from your laptop

June 15, 2018

A new database of plasma simulations, combined with observational data and powerful visualisation tools, is providing planetary scientists with an unprecedented way to explore some of the Solar System's most interesting plasma ...

NASA encounters the perfect storm for science

June 14, 2018

One of the thickest dust storms ever observed on Mars has been spreading for the past week and a half. The storm has caused NASA's Opportunity rover to suspend science operations, but also offers a window for four other spacecraft ...

The most distant radio galaxy discovered

June 14, 2018

An international team of astronomers has detected a new high-redshift radio galaxy (HzRG). The newly identified HzRG, designated TGSS1530, was found at a redshift of 5.72, meaning that it is the most distant radio galaxy ...

Trio of infant planets discovered around newborn star

June 13, 2018

Two independent teams of astronomers have uncovered convincing evidence that three young planets are in orbit around an infant star known as HD 163296. Using a new planet-finding strategy, the astronomers identified three ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.