Living in a constant din, bats' hearing remains resilient

April 1, 2016, Brown University
In experiments, big brown bats showed they don't suffer a temporary loss of hearing sensitivity amid the intense noise in which they live. Credit: Matt Reinbold via Flickr

At some time or another – perhaps at a loud concert or a construction site, for instance – many people have experienced the loss of hearing sensitivity that becomes strikingly evident after the noise subsides. That phenomenon is called a "temporary threshold shift" (TTS) and its occurrence is the norm among a wide variety of animals. But not so for bats. The company of other bats surrounds them with a cloud of incredibly intense sound, yet the results of experiments at Brown University show that their hearing doesn't suffer any significant sensitivity loss from their experience.

"They are naturally exposed to continuous intense sound levels from their own and neighboring sonar emissions while foraging, orienting, and emerging from their roosts," wrote the authors of the article in the Journal of Experimental Biology. "For , exposure to prolonged intense wideband sound is an occupational hazard."

Individual bats emit up to 100 to 110 decibels in sound pressure. The combined level of sound pressure among bats flying in groups can increase to 140 decibels, and it can last for several hours, which is comparable to the ambient sound on the deck of an active aircraft carrier.

"This would be like a pounding to a human," said study co-author Kelsey Hom, who graduated from Brown in 2015 and has stayed on as lab manager. One day in a class, Hom asked senior author Andrea Simmons, professor of cognitive, linguistic and psychological sciences and of neuroscience, whether bats experience the same TTS that other animals do. The answer was not known, so a study (and a senior thesis) was born.

High-volume research

They took to the lab to test the hypothesis that bats – in this case big brown bats from Rhode Island – have evolved some way of remaining resilient to their noisy circumstances.

The team, which also included then-lab manager Michaela Warnecke and Professor James Simmons of the neuroscience department, caught wild bats from around Rhode Island and brought them to the lab for a set of experiments. First they trained the bats with extra food rewards to move toward a natural spectrum of bat sound played from a lab speaker if they heard it. Then, they used the bats' newfound skill to test their baseline hearing sensitivity – how quiet a sound could still reliably induce the bat to move toward it. Next, they exposed some bats to the prolonged loudness and range of frequencies they would hear in normal bat life. Other bats were left unexposed to the cacophony as experimental controls. Finally they re-measured the bats' hearing sensitivity again 20 minutes, 2 hours and 24 hours later.

The results showed that unlike in people, fish, birds, rodents and other animals, the bats' hearing sensitivity barely changed. One bat for one timeframe lost about 5 decibels of sensitivity, but on average across seven bats, the total loss was only about 0.6 decibels 20 minutes after exposure. After 24 hours their sensitivity actually improved a similarly insignificant 1.7 decibels. Bats in the control group, who weren't exposed to prolonged loud noise, showed just about as much variation.

"In the literature, the definition of TTS is 6 decibels and above," Andrea Simmons said.

Could this help people?

The study documents the natural resiliency of bats' hearing, but it doesn't explain it.

"We hypothesize that the bat's inner ear may have some special adaptations that allow it to protect itself from loud noises," Simmons said.

The team is eager to learn how bats resist being deafened temporarily, not only for the sake of better understanding bat biology and behavior, but also because it may provide the inspiration to design devices or implants that can help people better weather exposure to loud noises.

"Bats have always been looked at as a model for sonar, with the goal of technological development, but these data suggest that they could be looked at as a biomedically related model as well," Simmons said.

Explore further: Bats found to produce longer and more intense calls when crowded by other bats

More information: A. M. Simmons et al. Broadband noise exposure does not affect hearing sensitivity in big brown bats (Eptesicus fuscus), Journal of Experimental Biology (2016). DOI: 10.1242/jeb.135319

Related Stories

What bats reveal about how humans focus attention

February 23, 2016

You're at a crowded party, noisy with multiple conversations, music and clinking glasses. But when someone behind you says your name, you hear it and quickly turn in that direction.

Are vampire bats nature's misunderstood monsters?

October 30, 2015

Werewolves, ghosts, and vampires—with the days getting shorter and colder, and Halloween fast approaching, our imaginations turn to the ghouls that supposedly come out around this time of year. Vampires, one of history's ...

Recommended for you

Study suggests trees are crucial to the future of our cities

March 25, 2019

The shade of a single tree can provide welcome relief from the hot summer sun. But when that single tree is part of a small forest, it creates a profound cooling effect. According to a study published today in the Proceedings ...

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

Apple pivot led by star-packed video service

March 25, 2019

With Hollywood stars galore, Apple unveiled its streaming video plans Monday along with news and game subscription offerings as part of an effort to shift its focus to digital content and services to break free of its reliance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.