Ancient bones point to shifting grassland species as climate changes

March 25, 2016
Corn is a C4 grass that thrives under warm, moist conditions. Credit: Fishhawk, courtesy of Oregon State University

More rainfall during the growing season may have led to one of the most significant changes in the Earth's vegetation in the distant past, and similar climate changes could affect the distribution of plants in the future as well, a new study suggests.

In a report in Science Advances, an analysis was done of mammoth and bison hair, teeth and bones, along with other data. It concludes that a changing climate—particularly increasing rainfall and not just atmospheric —explains the expansion of grassland plants during the latter part of the Neogene, a geologic era that includes the present.

The research was led by Jennifer Cotton, as a post-doctoral researcher at the University of Utah and in the College of Forestry at Oregon State University. She is now an assistant professor at the California State University, Northridge.

Scientists have long known that some grassland species became more abundant during this period, including the ancestors of corn, sugar cane and sorghum. Known as C4 grasses, they use a different method of metabolism via photosynthesis from most other types of vegetation, called C3 grasses. They tend to thrive under warm, moist conditions, in addition to low levels of carbon dioxide in the atmosphere.

"The point of the work was to understand what drove one of the most dramatic biological transitions in the past 65 million years, and also to better understand the past so that we can make predictions about the future," said Cotton. "We know that the balance between C3 and C4 grasses is controlled by both atmospheric CO2 and climate, but the relative influence of each of these factors has not been clear."

To understand what drove that transition, the researchers analyzed carbon isotopes in 632 samples of bison and mammoth tissues from across North America over the past 18,000 years, corresponding to the time between the peak of the last ice age to the present. The researchers were able to show that, over time, the animals' diets shifted toward more C4 plants and those plants gradually spread north.

By combining their findings with data on climate, temperature and changing , the researchers showed that increasing precipitation during the growing season was the single most important factor in the spread of C4 grasses. In recent years, increases in rainfall and temperature have enabled farmers to grow corn in the upper Midwest in areas dominated by wheat.

"Both atmospheric CO2 and climate have been changing and will continue to change in the future," said Cotton, "and many have suggested that additional CO2 in the atmosphere will benefit C3 grasses, causing them to outcompete C4 grasses. Our results suggest that climate, rather than CO2 fertilization, will drive future changes to C3 and C4 grass distributions, which will likely benefit C4 grasses in much of the Great Plains."

Explore further: Giant reed is a photosynthetic outlier, study finds

More information: Climate, CO2, and the history of North American grasses since the Last Glacial Maximum" Science Advances, advances.sciencemag.org/content/2/3/e1501346

Related Stories

Giant reed is a photosynthetic outlier, study finds

March 7, 2016

Arundo donax, a giant reed that grows in the Mediterranean climate zones of the world, isn't like other prolific warm-weather grasses, researchers report. This grass, which can grow annually to 6 meters (nearly 20 feet) in ...

How drought-tolerant grasses came to be

November 23, 2011

If you eat bread stuffing or grain-fed turkey this Thanksgiving, give thanks to the grasses — a family of plants that includes wheat, oats, corn and rice. Some grasses, such as corn and sugar cane, have evolved a unique ...

High CO2 spurs wetlands to absorb more carbon

July 16, 2013

(Phys.org) —Under elevated carbon dioxide levels, wetland plants can absorb up to 32 percent more carbon than they do at current levels, according to a 19-year study published in Global Change Biology from the Smithsonian ...

New research changes understanding of C4 plant evolution

November 15, 2010

(PhysOrg.com) -- A new analysis of fossilized grass-pollen grains deposited on ancient European lake and sea bottoms 16-35 million years ago reveals that C4 grasses evolved earlier than previously thought. This new evidence ...

Recommended for you

Researchers solve the century-old mystery of Blood Falls

April 25, 2017

A research team led by the University of Alaska Fairbanks and Colorado College has solved a century-old mystery involving a famous red waterfall in Antarctica. New evidence links Blood Falls to a large source of salty water ...

Mystery of the missing mercury at the Great Salt Lake

April 25, 2017

Around 2010, the deep waters of Utah's Great Salt Lake contained high levels of toxic methylmercury. Mercury measurements in waterfowl surrounding the lake led to a rare human consumption advisory for ducks.

Research shows global warming making oceans more toxic

April 25, 2017

Climate change is predicted to cause a series of maladies for world oceans including heating up, acidification, and the loss of oxygen. A newly published study published online in the April 24 edition of the Proceedings ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.