The mystery about the Chelyabinsk superbolide continues three years later

February 15, 2016, Plataforma SINC
The mystery about the Chelyabinsk superbolide continues three years later
The Chelyabinsk superbolide flew over the Urals early on the morning of February 15, 2013. Credit: Alex Alishevskikh

In 2013 February 15, the approach of asteroid (367943) Duende to our planet was being closely monitored by both the public and the scientific community worldwide when a superbolide entered the atmosphere above the region of Chelyabinsk in Russia. Three years and hundreds of published scientific studies later, we are still looking for the origin of this unexpected visitor that caused damage to hundreds of buildings and injuries to nearly 1,500 people. Finding the precise value of its speed as it touched the top of the atmosphere appears to be the key to determine the orbit of the parent body of the Chelyabinsk superbolide.

"Three years have passed since the Chelyabinsk (Russia) scare and during this time, more than two hundred related directly or indirectly to the 19-m wide Chelyabinsk superbolide have been published in scientific peer-review journals," explains Carlos de la Fuente Marcos, co-author of one of these research works.

Among these studies, there is a catalog of 960 video recordings published by the journal Astronomy & Astrophysics that include material automatically recorded by security cameras, traffic cameras, dashcams installed in all types of vehicles, and manual recordings made with the video cameras and webcams of the many accidental witnesses of the impressive phenomenon who shared their experiences on the internet.

The images and diverse scientific data compiled during the event have allowed the calculation of the atmospheric entry trajectory of the meteoroid, which turned into a meteor when it crossed Earth's , exploding at a height of 20 km and releasing 500 kilotons or energy, approximately thirty times the yield of the Hiroshima nuclear bomb. The shockwave generated by this explosion caused damage out to a distance of 75 miles, breaking windows and even window frames, of hundreds of buildings and injuring 1,491 people, mainly cuts inflicted by shattered and broken glass. Approximately five tons of meteoritic material reached the ground, including the 650 kg meteorite that was recovered by divers from the bottom of Lake Chebarkul.

The Chelyabinsk superbolide entry took place the same day, 2013 February 15. Duende (discovered originally from Spain) passed nearly 27,700 km above the Earth's surface, well inside the boundaries of the ring of geosynchronous satellites but nearly perpendicular to it, 16 hours after the Chelyabinsk superbolide explosion and the fall of the large meteorite into the Russian Lake Chebarkul.

At the beginning, it was thought that both events could be related and that the Chelyabinsk superbolide could have come from asteroid Duende itself or from a companion of this object, but when the orbits of both objects were analyzed and spectroscopic data of both asteroid Duende and the Chelyabinsk meteoritic material were studied in detail, the results obtained indicated that the two objects were completely independent and unrelated. It was a very unusual coincidence of the timing of two spectacular cosmic events.

Where in space did the Chelyabinsk superbolide come from? "For a while, it was thought that asteroid (86039) 1999 NC43 was a good candidate for the parent body of the Chelyabinsk superbolide but after the publication of a detailed international study in the journal Icarus, it became clear that the Chelyabinsk impactor and the PHA 86039 (1999 NC43) were not part of the same object; from a dynamical and compositional point of view, the relationship between both objects is too weak," says de la Fuente Marcos.

During the last year, different orbital solutions for the asteroid that gave origin to the Chelyabinsk superbolide have been proposed; one of them has been computed by the Spanish astrodynamicists brothers Carlos and Raúl de la Fuente Marcos and Sverre J. Aarseth , scientist of the University of Cambridge (United Kingdom). Their work has been published by The Astrophysical Journal.

These authors have used the recorded impact parameters of the Chelyabinsk superbolide to search for the orbit of its parent or dynamically related body by means of a numerical model validated using asteroid Duende's close approach data. "It is like when you are given a certain sample color to reproduce and a set of basic colors. You try all the mixtures, until you get the color that you want," says de la Fuente Marcos.

The results of de la Fuente Marcos and Aarseth's model suggest that asteroid 2011 EO40 is a good dynamical relative of the parent body of the Chelyabinsk superbolide, although there is not yet any spectroscopic evidence linking 2011 EO40 to Chelyabinsk. The common origin of both celestial objects is a possibility that cannot be discarded using the existing evidence.

The results obtained by de la Fuente Marcos and Aarseth indicate that the Chelyabinsk impactor likely passed a gravitational keyhole on 1982 February 15 during a close encounter with our planet at a distance shorter than 0.0015 AU. As a result of this close encounter, the initial 2011 EO40-like trajectory of the Chelyabinsk meteoroid was changed into the one that drove the meteoroid to strike the Earth over three decades later.

In addition, one of the main conclusions of this study, obtained after billions of simulations and a detailed statistical analysis, is that the main obstacle that prevents us from obtaining the correct orbit of the parent body of the Chelyabinsk superbolide is in the controversial value of its geocentric velocity at impact. This parameter has different values across many studies, and this leads to slightly different pre-impact orbits.

As a matter of fact, the researchers admit that it is very difficult to know the exact asteroid that gave origin to the Chelyabinsk superbolide because in the neighborhood of our planet, there is a tangled web of overlapping gravitational resonances that confines asteroids of heterogeneous, or diverse, origin to very similar orbits.

"These gravitational resonances create an environment like that of the great cities that attract people from different places and with very diverse backgrounds," says de la Fuente Marcos, who adds "Having two very similar orbits today does not imply that these orbits were also similar in the remote past".

This scenario is the one explored by the same authors in their latest research work to be published in March by the journal Monthly Notices of the Royal Astronomical Society, but that is already available online. "Here we demonstrate using statistics that among the objects close to the Earth (NEOs) there are groups of dynamical origin made of asteroids moving in similar orbits that may not be physically related or have the same chemical composition," says de la Fuente Marcos.

Several asteroids that have collided with the Earth in recent times, like 2008 TC3 in Sudan or 2014 AA in the Atlantic Ocean, belong to these groups, and the researchers predict in their work that this will continue happening in the future. Regarding the Chelyabinsk superbolide, they suggest that it came from the Ptah group, a collection of asteroids with similar orbits in which one of the largest is the named asteroid Ptah.

In summary, we do not know the origin of the object that struck Russia, producing the most powerful explosion since the Tunguska event in 1908. But what all the experts agree on, however, is that —lucky for us— the Chelyabinsk event was a rare one. Impacts of meteoroids with an energy yield similar to that of Chelyabinsk happen only a few times per century, and close to a city as populated as Chelyabinsk, only once every 10,000 years. What nobody knows is when and where the next Chelyabinsk-like event will take place.

Explore further: Two years on, source of Russian Chelyabinsk meteor remains elusive

More information: C. de la Fuente Marcos et al. CHASING THE CHELYABINSK ASTEROID -BODY STYLE , The Astrophysical Journal (2015). DOI: 10.1088/0004-637X/812/1/26

C. de la Fuente Marcos, R. de la Fuente Marcos. "Far from random: dynamical groupings among the NEO population". Monthly Notices of the Royal Astronomical Society 456 (3): 2946-2956, March 2016.

Related Stories

Small asteroid to pass close to Earth March 5

February 3, 2016

A small asteroid that two years ago flew past Earth at a comfortable distance of about 1.3 million miles (2 million kilometers) will safely fly by our planet again in a few weeks, though this time it may be much closer.

Research shows collision created Chelyabinsk asteroid

May 23, 2014

( —On February 15 2013, an asteroid exploded about 30 kilometers above Chelyabinsk, Russia. The explosion, shared on video around the world, was the Earth's second largest recorded airburst. By analyzing fragments ...

Recommended for you

Climbing the ladder to life detection

June 25, 2018

In the past two decades, NASA spacecraft have identified potentially habitable environments throughout the solar system and beyond. Spacecraft on Mars have found evidence that lakes and streams once covered the planet, protected ...

Planetary nebula lasers

June 25, 2018

Astronomical masers (the radio wavelength analogs of lasers) were first identified in space over fifty years ago and have since been seen in many locations; astronomical lasers have since been seen as well. Some of the most ...

HESS J1943+213 is an extreme blazar, study finds

June 21, 2018

An international group of astronomers have carried out multi-wavelength observations of HESS J1943+213 and found evidence supporting the hypothesis that this gamma-ray source is an extreme blazar. The finding is reported ...

The Rosetta stone of active galactic nuclei deciphered

June 21, 2018

A galaxy with at least one active supermassive black hole – named OJ 287 – has caused many irritations and questions in the past. The emitted radiation of this object spans a wide range – from the radio up to the highest ...

'Red nuggets' are galactic gold for astronomers

June 21, 2018

About a decade ago, astronomers discovered a population of small, but massive galaxies called "red nuggets." A new study using NASA's Chandra X-ray Observatory indicates that black holes have squelched star formation in these ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Feb 16, 2016
Just lucky it did not hit during the height of the cold war when it could have been mistaken for a preemptive nuclear strike with catastrophic consequences such that none of us would be here today reading this.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.