An interaction between perovskites and quantum dots could improve LED and solar technologies

February 9, 2016

Researchers in Valencia have studied the interaction of two materials, halide perovskite and quantum dots, revealing enormous potential for the development of advanced LEDs and more efficient solar cells.

Researchers from the Universitat Jaume I (James I University, UJI) and the Universitat de València (University of Valencia, UV) have quantified the "exciplex state" resulting from the coupling of halide perovskites and colloidal . Both known separately for their optoelectronic properties, when combined, these yield much longer wavelengths than can be achieved by either material alone, plus easy tuning properties that together have the potential to usher in important changes in LED and solar technologies.

Perovskite materials are the rising stars of the photovoltaic industry. They are cheap to produce, simple to manufacture and very efficient. They are also relatively new to the scene and offer the potential for more efficient solar cells. They are also used in LED technology. 

Quantum dots (QDs) are a family of semiconductor materials with very interesting light-emitting properties, including the ability to tune what wavelengths light is emitted at. They are also very useful in both LEDs and solar cells.

Combining the two materials creates a new exciplex state in which light can be emitted at much longer wavelengths, reaching well into the infrared spectrum, while also allowing control over its emission colour via applied voltage. Each material —the perovskite, the QDs and the new exciplex state— emits light at a different colour, each of which can be weighted within the overall light emission to pick out the desired colour.

This means LEDs can be designed that emit light over both the visible and infrared spectrums simultaneously, which has applications in the field of telecommunications.

Furthermore, working on the basis of the reciprocity principle, this new state will potentially lead to the development of solar cells that can transform more of the sun's light into . Currently, solar cells can only transform light emitted over a relatively narrow band of wavelengths. But if it is possible to produce light at longer wavelengths via an electrical input, then it is theoretically possible to obtain electrical energy by absorbing with these longer wavelengths, thereby increasing the efficiency of .

Explore further: Ultrathin perovskite nanocrystals suitable for use in tunable and energy-efficient LEDs

More information: R. S. Sanchez et al. Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: Implications in advanced LEDs and photovoltaics, Science Advances (2016). DOI: 10.1126/sciadv.1501104

Related Stories

Recommended for you

What the world's tiniest 'monster truck' reveals

August 23, 2017

The world's shortest race by distance—a fraction of the width of a human hair—was run on gold and silver tracks, and took a whopping 30 hours. Given that the vehicles were invisible to the naked eye, your typical racing ...

A more complete picture of the nano world

August 23, 2017

They may be tiny and invisible, says Xiaoji Xu, but the aerosol particles suspended in gases play a role in cloud formation and environmental pollution and can be detrimental to human health.

Testing TVs and tablets for 'green' screens

August 21, 2017

To improve viewing pleasure, companies have developed television—and tablet screens—that include quantum dots to enhance brightness and color. Some quantum dots are made with potentially harmful metals, which could leach ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.