An interaction between perovskites and quantum dots could improve LED and solar technologies

February 9, 2016

Researchers in Valencia have studied the interaction of two materials, halide perovskite and quantum dots, revealing enormous potential for the development of advanced LEDs and more efficient solar cells.

Researchers from the Universitat Jaume I (James I University, UJI) and the Universitat de València (University of Valencia, UV) have quantified the "exciplex state" resulting from the coupling of halide perovskites and colloidal . Both known separately for their optoelectronic properties, when combined, these yield much longer wavelengths than can be achieved by either material alone, plus easy tuning properties that together have the potential to usher in important changes in LED and solar technologies.

Perovskite materials are the rising stars of the photovoltaic industry. They are cheap to produce, simple to manufacture and very efficient. They are also relatively new to the scene and offer the potential for more efficient solar cells. They are also used in LED technology. 

Quantum dots (QDs) are a family of semiconductor materials with very interesting light-emitting properties, including the ability to tune what wavelengths light is emitted at. They are also very useful in both LEDs and solar cells.

Combining the two materials creates a new exciplex state in which light can be emitted at much longer wavelengths, reaching well into the infrared spectrum, while also allowing control over its emission colour via applied voltage. Each material —the perovskite, the QDs and the new exciplex state— emits light at a different colour, each of which can be weighted within the overall light emission to pick out the desired colour.

This means LEDs can be designed that emit light over both the visible and infrared spectrums simultaneously, which has applications in the field of telecommunications.

Furthermore, working on the basis of the reciprocity principle, this new state will potentially lead to the development of solar cells that can transform more of the sun's light into . Currently, solar cells can only transform light emitted over a relatively narrow band of wavelengths. But if it is possible to produce light at longer wavelengths via an electrical input, then it is theoretically possible to obtain electrical energy by absorbing with these longer wavelengths, thereby increasing the efficiency of .

Explore further: Ultrathin perovskite nanocrystals suitable for use in tunable and energy-efficient LEDs

More information: R. S. Sanchez et al. Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: Implications in advanced LEDs and photovoltaics, Science Advances (2016). DOI: 10.1126/sciadv.1501104

Related Stories

Recommended for you

Nanoscale view of energy storage

January 16, 2017

In a lab 18 feet below the Engineering Quad of Stanford University, researchers in the Dionne lab camped out with one of the most advanced microscopes in the world to capture an unimaginably small reaction.

Scientists create first 2-D electride

January 11, 2017

(Phys.org)—Researchers have brought electrides into the nanoregime by synthesizing the first 2D electride material. Electrides are ionic compounds, which are made of negative and positive ions. But in electrides, the negative ...

Semiconductor eyed for next-generation 'power electronics'

January 10, 2017

Researchers have demonstrated the high-performance potential of an experimental transistor made of a semiconductor called beta gallium oxide, which could bring new ultra-efficient switches for applications such as the power ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.