'Frightening' findings foretell ills for ecosystems

February 12, 2016, University of Western Ontario
Research by recent PhD graduate Beth Hundey (Geography) showed, for the first time, that 70 per cent of nitrates in high mountain lakes in Utah are from human-caused sources – with fertilizers having, by far, the most impact at 60 per cent, along with another 10 per cent caused by fossil fuels.

When it comes to determining the causes negatively affecting the biodiversity of our ecosystems, a new interdisciplinary study at Western is putting numbers behind the devastation. And it's not good.

The study's lead author, recent PhD graduate Beth Hundey (Geography), showed, for the first time, that 70 per cent of nitrates in high mountain lakes in Utah are from human-caused sources – with fertilizers having, by far, the most impact at 60 per cent, along with another 10 per cent caused by fossil fuels. The research suggests these findings could apply to other mountain ranges in western North America.

"It's frightening that these remote areas are seeing such a large human impact," Hundey said. "We were surprised there has been such a large contribution from agriculture to these remote mountain sites."

Hundey's research, co-authored by Geography professor Katrina Moser, Earth Sciences professor Fred Longstaffe and his former PhD student Sam Russell, was published this week in the journal Nature Communications.

Unlike temperature and dissolved oxygen, the presence of normal levels of nitrates usually does not have a direct effect on ecosystems. However, excess levels of nitrates in water can create conditions that significantly alter an area's biodiversity.

Hundey and her colleagues used a triple-isotope technique (an atom with the same number of protons, but differing numbers of neutrons) to prove the nitrate's origin. The isotope signatures – not unlike fingerprints – distinguish various nitrate sources, including fertilizers, soil and the atmosphere. The team accomplished this using an apparatus built, and customized, by Western's Laboratory for Stable Isotope Science, led by Longstaffe, who holds the Canada Research Chair in Stable Isotope Science.

Hundey discovered nitrates can travel hundreds of kilometres through the air – be it through the process of gasses coming off of farmland, or even being picked up through dust and traveling to the site. The area she studied is approximately 150 kilometres from any urban area – in this case Salt Lake City, which has a population of just under 200,000.

Hundey added this problem not only affects biodiversity and reduces water quality, it has particular ramifications for the health of mountain ecosystems and for populations living nearby.

"Systems like this are a warning, not only for protecting those resources and the biodiversity of that area, but also in populated regions," she said. "If it's reaching an area as remote as this, then it should be no surprise that it's a problem. The systems that have evolved over such a long time have evolved with low levels of nitrates, or what has been made available. So, to suddenly put in all sorts of can causes huge ramifications."

By identifying the cause of the problem, communities and governments will be able to develop mitigation strategies, particularly given anticipated expansion of human populations and fertilizer use.

"It's already past becoming a problem, but we can't consider ourselves beyond making a change," said Hundey. "This is too important. If we are to do something there is time, and that time is sooner rather than later.

"We need to have a conversation about how you balance food production and fertilizer with protecting really valuable water resources. We're not saying to stop using fertilizer, but knowing they have an impact on distant lakes, we can examine different ways of using and applying them. There needs to be an understanding that we can do better."

Explore further: Curiosity rover finds biologically useful nitrogen on Mars

Related Stories

Switchgrass lessens soil nitrate loss into waterways

August 9, 2010

By planting switchgrass and using certain agronomic practices, farmers can significantly reduce the amount of nitrogen and nitrates that leach into the soil, according to Iowa State University research.

Nutrients in water may be a bonus for agriculture

November 24, 2008

Agriculture producers may find they don't have to bottle their water from the Seymour Aquifer in the Rolling Plains to make it more valuable, according to Texas AgriLife Research scientists.

Recommended for you

A switch in ocean circulation that helped end the Ice Age

April 24, 2018

Changes in the circulation of the North Pacific Ocean about 15,000 years ago released large amounts of CO2 to the atmosphere, helping warm the planet and end the last Ice Age, according to research by scientists at the University ...

Airborne dust threatens human health in Southwest

April 24, 2018

In 1935, at the height of the Dust Bowl, a team of researchers from the Kansas Board of Health set out to understand the impact of dust on human health. In areas impacted by dust storms, the researchers documented an increase ...


Adjust slider to filter visible comments by rank

Display comments: newest first

2 / 5 (4) Feb 12, 2016
We are going to drown in our own waste.
3.7 / 5 (3) Feb 12, 2016
You are going to smother us in the flood of 1 line turds you insist on dropping here.
2.3 / 5 (3) Feb 12, 2016
They are to feed your fixation on me, otto. Look at your latest posts, which betray your own psychological state, not mine. I think otto dreams of me.

It's funny to see someone with such a dominating fixation on someone else. So far, . . .

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.