Electron's 1-D metallic surface state observed

February 8, 2016, Osaka University
In 1-D, electrons cannot "pass each other". Credit: Osaka University

In the one-dimensional (1D), various exotic phenomena are predicted that are totally different from those in the 3D world in which we live. One of the reasons of this is that particles cannot pass each other in 1D. (Fig. 1, in other words, correlation between electrons plays much more important role than those in 3D)

Researchers in Japan and France artificially created such unique 1D nano electronic systems on the surface of a solid, and observed the 1D electronic state (energy and kinetic momentum of ) by analyzing photo-emitted electrons from the sample, and verified the electronic structure. This group's research will help elucidate the mystery of unique electronic properties of 1D nano metals and provide, for example, information helpful for the prediction of electrons confined in extremely fine metal nanowires used in next-generation semiconductor devices.

A group of researchers led by Yoshiyuki Ohtsubo (Assistant Professor) and Shin-ichi Kimura (Professor) at Osaka University, Kiyohisa Tanaka (Associate Professor) of the Institute for Molecular Science, and Amina Taleb (Research Director/UR1-CNRS) of Synchrotron SOLEIL, France, artificially created Tomonaga-Luttinger liquid (TLL) on the surface of a semiconductor crystal. TLL is a typical exotic state in 1D in which electrons move not as individual paticles, but as a group, and the movements of spin and charge appear separately. This state is totally different from the normal state of electrons in metal.

Using angule-resolved photoemission spectroscopy, a method for observing kinetic momentum and binding energy of electrons in solid by shedding light on solid and observing the angle and energy of emitted electrons, this group elucidated the electrons' state and movement in a wide scope of energy for the first time.

The 1D surface nanostructure discovered by this group, through the determination of detailed atomic structure and comparison with theoretical computation, will develop research on 1D nano-metallic electronic state, which had not been well known to this point due to shortage of experimental data.

As the understanding of the uniqueness of 1D nano metals is essential for predicting electronic properties of extremely fine metal nanowires in next-generation semiconductor devices, further development of research is highly anticipated.

This research was published in Physical Review Letters on Dec. 17th, 2015 (EST).

Explore further: Study finds the law governing how heat transport scales up with temperature

More information: Yoshiyuki Ohtsubo et al. Surface Tomonaga-Luttinger-Liquid State on , Physical Review Letters (2015). DOI: 10.1103/PhysRevLett.115.256404

Related Stories

Creating an electrical conduit using two insulators

January 14, 2016

Revolutionary new electronic devices, such as those required for next-generation computers, require new and novel material systems. Scientists at the University of Minnesota and Pacific Northwest National Laboratory showed ...

Electrons move like light in three-dimensional solid

April 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional materials, such ...

Semiconductors with electric and magnetic properties

October 17, 2012

European scientists developed solid-state semiconductor components with magnetic properties, a prerequisite for a new generation of electronic devices exploiting both the charge and the spin of electrons.

Recommended for you

Some black holes erase your past

February 21, 2018

In the real world, your past uniquely determines your future. If a physicist knows how the universe starts out, she can calculate its future for all time and all space.

Reaching new heights in laser-accelerated ion energy

February 20, 2018

A laser-driven ion acceleration scheme, developed in research led at the University of Strathclyde, could lead to compact ion sources for established and innovative applications in science, medicine and industry.

MEMS chips get metatlenses

February 20, 2018

Lens technologies have advanced across all scales, from digital cameras and high bandwidth in fiber optics to the LIGO lab instruments. Now, a new lens technology that could be produced using standard computer-chip technology ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.