New approach to data reduction for intelligent transportation systems

February 29, 2016 by Diane Kukich

Intelligent transportation systems enable people to make smart travel choices, whether it's selecting an alternate route to avoid a minor traffic backup or figuring out the safest evacuation path during a hurricane.

But massive amounts of data are challenging the ability of these systems to provide accurate, real-time information to users.

"We now have new data streams about traffic dynamics such as vehicle speed, the number of vehicles, the location of accidents, and so on, resulting in huge amounts of connected data," says Lena Mashayekhy, assistant professor of computer science at the University of Delaware. 

A research team that includes Mashayekhy, along with other academic researchers and a senior technical leader from Ford Motor Company, has come up with a way to reduce that data so that it can be used in (ITS) applications.

Their work has been published as a paper, "Hierarchical Time-Dependent Shortest Path Algorithms for Vehicle Routing Under ITS," in the February issue of IIE Transactions, and it also has been selected as a January 2016 featured article in Industrial Engineer magazine.

Known as HTGD (hierarchical time-dependent goal directed), the approach involves identifying similar "communities" in the traffic data and then finding the shortest route at the highest level, effectively reducing the search space by eliminating entire communities that would not be traversed by the optimal path.

"Our method strikes a good balance between efficiency, or search cost, and effectiveness, or path optimality," Mashayekhy says. 

"We believe that the significant reduction in memory requirements of HTGD compared with those of other current methods makes it suitable to be incorporated into vehicle routing navigation systems. It will be especially valuable for determining which routes are available—and which are not—in routing emergency vehicles and organizing natural disaster evacuations." 

Extensive experimental evaluations of the proposed approach on Detroit, New York, and San Francisco road networks have demonstrated the computational efficiency and accuracy of the proposed method. 

Explore further: Team develops novel intelligent transportation system for personalized reliable driving routes

More information: Mark Mahyar Nejad et al. Hierarchical time-dependent shortest path algorithms for vehicle routing under ITS, IIE Transactions (2015). DOI: 10.1080/0740817X.2015.1078523

Related Stories

Cutting electric vehicle energy use 51 percent

September 9, 2014

( —Researchers at the University of California, Riverside's Bourns College of Engineering have shown that a vehicle navigation tool they created can cut electric vehicle energy use up to 51 percent.

Recommended for you

'Droneboarding' takes off in Latvia

January 22, 2017

Skirted on all sides by snow-clad pine forests, Latvia's remote Lake Ninieris would be the perfect picture of winter tranquility—were it not for the huge drone buzzing like a swarm of angry bees as it zooms above the solid ...

Singapore 2G switchoff highlights digital divide

January 22, 2017

When Singapore pulls the plug on its 2G mobile phone network this year, thousands of people could be stuck without a signal—digital have-nots left behind by the relentless march of technology.

Making AI systems that see the world as humans do

January 19, 2017

A Northwestern University team developed a new computational model that performs at human levels on a standard intelligence test. This work is an important step toward making artificial intelligence systems that see and understand ...

Firms push hydrogen as top green energy source

January 18, 2017

Over a dozen leading European and Asian firms have teamed up to promote the use of hydrogen as a clean fuel and cut the production of harmful gasses that lead to global warming.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.