Alternative method for the representation of microstructures in polycrystalline materials

December 18, 2015, Helmholtz Association of German Research Centres
A composite Raman intensity-distribution map on a polycrystalline CuInSe2 thin film. Credit: HZB

Most solid materials are of polycrystalline nature. In which way the individual grains are oriented in the material can be relevant for its functional properties. In order to determine the corresponding orientation distributions on large specimen areas, generally, a scanning electron microscope is employed. The specimen surface needs to be prepared, before it can be probed under vacuum by an electron beam and analyzed using electron backscatter diffraction (EBSD).

It has now been shown by a team at HZB headed by Dr. Daniel Abou-Ras, together with Dr. Thomas Schmid from BAM, that equivalent distribution maps can be obtained also by means of Raman microspectroscopy. This method needs only an optical microscopy setup, no time-consuming specimen preparation, and can also be conducted under ambient conditions.

The scientists used CuInSe2 thin films as a model system for their study. They showed that the experimental Raman intensities correspond well with the theoretical intensities calculated by using the local orientations from the EBSD map. "The sample area was scanned by a laser beam using step sizes of 200 nanometers. For such measurement conditions, the sample environment needs to be controlled carefully and kept stable for several hours," explains Dr. Abou-Ras.

The application of Raman microspectroscopy for orientation distribution analysis is possible in principle for all polycrystalline materials, whether they are inorganic or organic, as long as they are Raman active.

An EBSD orientation-distribution map from the same identical specimen position. Credit: HZB

Explore further: New technique can see nanoscale 'tree' and microscale 'forest' simultaneously

More information: T. Schmid et al. Orientation-distribution mapping of polycrystalline materials by Raman microspectroscopy, Scientific Reports (2015). DOI: 10.1038/srep18410

Related Stories

Software for the discovery of new crystal structures

May 11, 2011

A new software called QED (Quantitative Electron Diffraction), which has been licensed by Max Planck Innovation, has now been released by HREM Research Inc., a Japan based company, which is developing products and services ...

A single-cell pipeline for soil samples

October 16, 2015

To investigate in situ function of uncultivated microbes, scientists evaluated a process for preparing soil samples for single-cell analysis methods.

Recommended for you

Semimetals are high conductors

March 18, 2019

Researchers in China and at UC Davis have measured high conductivity in very thin layers of niobium arsenide, a type of material called a Weyl semimetal. The material has about three times the conductivity of copper at room ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.