Physicist shrinking electron-laser technology

October 14, 2015 by Scott Seckel, Arizona State University
William Graves, associate professor in the university’s Physics Department and Biodesign Institute, came to ASU from MIT to create a compact version of a free electron laser — a move that has the potential to revolutionize X-ray science. Credit: Charlie Leight/ASU Now

Free electron lasers—powerful devices that can peer deep into molecular structure and the ultrafast timescales of chemistry—cost billions to build and are miles long, but an Arizona State University professor is constructing a version that can fit on a tabletop. And it will cost a fraction of the price of its larger peers.

This compact laser will be accessible to millions of scientists, instead of hundreds, advancing countless fields of research and potentially expanding medical uses.         

"There's almost no limit to what it can do," said William Graves, associate professor in the university's Physics Department and Biodesign Institute. "These things are brand new; they've never existed before. We think it's really going to revolutionize X-ray science."

Free electron lasers, which use a high-power laser to make X-rays with electrons, have been around for five years, but only a few exist. They cost $1 billion to build, they can be miles long, and they cost $100 million annually to operate. Access to them is highly sought after by scientists, with 80 percent of applications rejected.

Graves' compact version will be about 3 feet long, cost about $10 million to build, operate on a $1 million annual budget, and require three people to run it.

"Not only can we do great science with this, but lots of people can do great science with this," he said. "It's like taking a huge synchrotron (particle accelerator) at a national lab and we're sticking it over in (the Biodesign department). All the things they do with a synchrotron, we can do here."

An accelerator physicist and a veteran of MIT and Brookhaven National Lab, Graves has worked on the big particle accelerators, which make X-ray light sources, but in the past 10 years has been working on small free electron lasers.

Graves came to ASU from the Massachusetts Institute of Technology to work on this new generation of imaging technology because, "ASU is giving me the chance to build it."

Graves came to ASU from the Massachusetts Institute of Technology because "Petra Fromme and John Spence at ASU demonstrated they have the vision and resources to make this project successful," Graves said. Fromme directs the Biodesign Institute's Center for Applied Structural Discovery and is a professor in ASU's Department of Chemistry and Biochemistry. Spence is a Regents' Professor and the Richard Snell Professor of Physics at ASU.

"ASU has stepped up to the plate and funded the first version of it," Graves said. "We're building it as a collaboration. We'll initially run it at MIT, but as soon as our laboratory space is ready here, we'll bring it here and run it here."

The laser is being assembled at MIT under ASU direction and will be operated there until the new third Biodesign building is complete at ASU.

Graves sees the compact version being a crucial new tool in medicine because it could be used to notice differences in soft tissue, such as seeing a tumor within a breast.

"It can see things that are just plain invisible to conventional X-rays," he said. "We'd like to commercialize it. We think there's a lot of potential. Not every hospital, but every medical center would want one."

The machine will be capable of looking at the of any living system.

"With an X-ray laser, the pulses are so short you can strobe the chemical reaction and make a movie of how molecules move and bind and break their bonds with each other," Graves said.

"The goal is to make these movies with the X-ray laser."

It's more than just science and medicine that could benefit from Graves' ambitious design.

He recently visited the conservation and research labs at the Louvre in Paris, where art treasures could be analyzed using his compact X-ray onsite. This would allow experts to determine authenticity or whether a painting was created on top of another painting.

"We think we can really change X-ray science," he said.

Explore further: Team shrinks particle accelerator: Prototype demonstrates feasibility of building terahertz accelerators

Related Stories

Unique SLAC technology to power X-ray laser in South Korea

August 10, 2015

Accelerator technology pioneered at the Department of Energy's SLAC National Accelerator Laboratory is on its way to powering X-ray science in South Korea: On Aug. 6, the lab shipped one of its unique radio-frequency amplifiers ...

Measuring individual atoms with compact X-ray lasers

November 30, 2012

To look at small objects typically requires big machines. For example, the study of single atoms with a laser requires x-ray radiation of such high energy that it is only produced by accelerating electrons in large facilities. ...

Recommended for you

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.