From trees to power: McMaster engineers build better energy storage device

From trees to power: McMaster engineers build better energy storage device

McMaster Engineering researchers Emily Cranston and Igor Zhitomirsky are turning trees into energy storage devices capable of powering everything from a smart watch to a hybrid car.

The scientists are using cellulose, an organic compound found in plants, bacteria, algae and trees, to build more efficient and longer-lasting or capacitors. This development paves the way toward the production of lightweight, flexible, and high-power electronics, such as wearable devices, portable power supplies and hybrid and electric vehicles.

"Ultimately the goal of this research is to find ways to power current and with efficiency and in a sustainable way," says Cranston, whose joint research was recently published in Advanced Materials. "This means anticipating future technology needs and relying on materials that are more environmentally friendly and not based on depleting resources.

Cellulose offers the advantages of high strength and flexibility for many advanced applications; of particular interest are nanocellulose-based materials. The work by Cranston, an assistant chemical engineering professor, and Zhitomirsky, a materials science and engineering professor, demonstrates an improved three-dimensional device constructed by trapping functional nanoparticles within the walls of a nanocellulose foam.

The foam is made in a simplified and fast one-step process. The type of nanocellulose used is called cellulose nanocrystals and looks like uncooked long-grain rice but with nanometer-dimensions. In these new devices, the 'rice grains' have been glued together at random points forming a mesh-like structure with lots of open space, hence the extremely lightweight nature of the material. This can be used to produce more sustainable capacitor devices with higher power density and faster charging abilities compared to rechargeable batteries.

Lightweight and high-power density capacitors are of particular interest for the development of hybrid and . The fast-charging devices allow for significant energy saving, because they can accumulate energy during braking and release it during acceleration.

"I believe that the best results can be obtained when researchers combine their expertise," Zhitomirsky says. "Emily is an amazing research partner. I have been deeply impressed by her enthusiasm, remarkable ability to organize team work and generate new ideas."


Explore further

Sol-gel capacitor dielectric offers record-high energy storage

More information: Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials, DOI: 10.1002/adma.201502284
Journal information: Advanced Materials

Citation: From trees to power: McMaster engineers build better energy storage device (2015, September 19) retrieved 20 September 2019 from https://phys.org/news/2015-09-trees-power-mcmaster-energy-storage.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
828 shares

Feedback to editors

User comments

Sep 20, 2015
If we work with Nature in our systems, we do not have to brute-force anything.

It is a lesson we have yet to learn.

Sep 20, 2015
Yes, I know the pull of making bigger things draws us to centralized systems, but they have outlived their usefulness. Using Nature, we can have distributed and diversified sources for greater reliability, efficacy, and choice of power.

We will not have to rely on some Nuclear Priesthood and a Police State for our power. This is one step toward our evolution as a cleaner species, one not fouling its own nest.

Sep 20, 2015
If you are tired of this wallstreet34 stuff, go to:

https://ultimate-...rt.html,

and make your views known.

Tomorrow, I will call them.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more