Solar cell absorbs high-energy light at 30-fold higher concentration than conventional cells

September 2, 2015 by Lynn Yarris, Lawrence Berkeley National Laboratory
Bathing the Earth with enough energy in one hour to meet human needs for an entire year, the sun represents the ultimate source of clean, green sustainable energy.

By combining designer quantum dot light-emitters with spectrally matched photonic mirrors, a team of scientists with Berkeley Lab and the University of Illinois created solar cells that collect blue photons at 30 times the concentration of conventional solar cells, the highest luminescent concentration factor ever recorded. This breakthrough paves the way for the future development of low-cost solar cells that efficiently utilize the high-energy part of the solar spectrum.

"We've achieved a luminescent concentration ratio greater than 30 with an optical efficiency of 82-percent for blue photons," says Berkeley Lab director Paul Alivisatos, who is also the Samsung Distinguished Professor of Nanoscience and Nanotechnology at the University of California Berkeley, and director of the Kavli Energy Nanoscience Institute (ENSI), was the co-leader of this research. "To the best of our knowledge, this is the highest luminescent concentration factor in literature to date."

Alivisatos and Ralph Nuzzo of the University of Illinois are the corresponding authors of a paper in ACS Photonics describing this research entitled "Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration." Noah Bronstein, a member of Alivisatos's research group, is one of three lead authors along with Yuan Yao and Lu Xu. Other co-authors are Erin O'Brien, Alexander Powers and Vivian Ferry.

The solar energy industry in the United States is soaring with the number of photovoltaic installations having grown from generating 1.2 gigawatts of electricity in 2008 to generating 20-plus gigawatts today, according to the U.S. Department of Energy (DOE). Still, nearly 70-percent of the electricity generated in this country continues to come from fossil fuels. Low-cost alternatives to today's photovoltaic solar panels are needed for the immense advantages of solar power to be fully realized. One promising alternative has been luminescent solar concentrators (LSCs).

Unlike conventional that directly absorb sunlight and convert it into electricity, an LSC absorbs the light on a plate embedded with highly efficient light-emitters called "lumophores" that then re-emit the absorbed light at longer wavelengths, a process known as the Stokes shift. This re-emitted light is directed to a micro-solar cell for conversion to electricity. Because the plate is much larger than the micro-solar cell, the solar energy hitting the cell is highly concentrated.

With a sufficient concentration factor, only small amounts of expensive III−V photovoltaic materials are needed to collect light from an inexpensive luminescent waveguide. However, the concentration factor and collection efficiency of the molecular dyes that up until now have been used as lumophores are limited by parasitic losses, including non-unity quantum yields of the lumophores, imperfect light trapping within the waveguide, and reabsorption and scattering of propagating photons.

"We replaced the molecular dyes in previous LSC systems with core/shell nanoparticles composed of cadmium selenide (CdSe) cores and cadmium sulfide (CdS) shells that increase the Stokes shift while reducing photon re-absorption," says Bronstein.

"The CdSe/CdS nanoparticles enabled us to decouple absorption from emission energy and volume, which in turn allowed us to balance absorption and scattering to obtain the optimum nanoparticle," he says. "Our use of photonic mirrors that are carefully matched to the narrow bandwidth of our quantum dot lumophores allowed us to achieve waveguide efficiency exceeding the limit imposed by total internal reflection."

In their ACS Photonics paper, the collaborators express confidence that future LSC devices will achieve even higher concentration ratios through improvements to the luminescence quantum yield, waveguide geometry, and photonic mirror design.

Explore further: Cascade solar concentrator greatly reduces solar cell footprint

More information: "Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration." ACS Photonics, Article ASAP DOI: 10.1021/acsphotonics.5b00334

Related Stories

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Shiny quantum dots brighten future of solar cells

April 14, 2014

(Phys.org) —A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University of Milano-Bicocca ...

Towards more efficient solar cells

August 13, 2014

A layer of silicon nanocrystals and erbium ions may help solar cells to extract more energy from the ultraviolet (UV, high-energy) part of the solar spectrum. Experimental physicists from the FOM Foundation, the STW Technology ...

Recommended for you

Researchers make shape shifting cell breakthrough

December 11, 2018

A new computational model developed by researchers from The City College of New York and Yale gives a clearer picture of the structure and mechanics of soft, shape-changing cells that could provide a better understanding ...

Novel laser technology for microchip-size chemical sensors

December 11, 2018

Most lasers emit photons of exactly the same wavelength, producing a single color. However, there are also lasers that consist of many frequencies, with equal intervals in between, as in the teeth of a comb; thus, they are ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

EyeNStein
not rated yet Sep 03, 2015
Could this quantum dot stokes shift technology be applied to the reflective coating on the back of thin film silicon solar cells?
The blue light which silicon cannot use would then be reflected back through as a colour the cell can effectively convert.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.