When fruit flies get sick, their offspring become more diverse

August 13, 2015, North Carolina State University
When D. melanogaster is infected, offspring of ebony rough (left) and wild type (right) fruit flies produce more genetically diverse progeny. Credit: Dahlia Nielsen, NC State University.

New research from North Carolina State University and Reed College shows that when fruit flies are attacked by parasites or bacteria they respond by producing offspring with greater genetic variability. This extra genetic variability may give the offspring an increased chance of survival when faced with the same pathogens. These findings demonstrate that parents may purposefully alter the genotypes of their offspring.

Fruit flies' reproductive cells are usually haploid, meaning that there is only one copy of each chromosome in the cell's nucleus instead of two. During meiosis, the form of cell division that creates eggs in females and sperm in males, female fruit flies produce eggs that contain only one set of chromosomes - each chromosome in the set may be a copy of the mother's chromosome or a copy of the father's chromosome. Or they may be a mixture of both chromosomes due to a process known as recombination. Under normal conditions each offspring of a female fruit fly has a 25 percent chance of getting a maternal copy of a chromosome, a 25 percent chance of receiving a paternal copy, and a 50 percent chance of receiving a recombinant chromosome.

In theory, under conditions in which organisms face new threats, such as those posed by parasites or pathogens, it could be advantageous to have offspring with more recombinant chromosomes. These offspring would have more novel combinations of alleles (versions of particular genes), increasing the chances that at least some of them would be well adapted to these threats.

Female parasitic wasp (Leptopilina heterotoma) is probing the media for Drosophila larvae (note ovipositor). She attempts to infect a large Drosophila larva but fails to puncture its cuticle. Credit: Michael Martin, Reed College

Nadia Singh, an assistant professor of biological sciences at NC State, and her colleague and co-author of a paper describing the work, Todd Schlenke of Reed College, wanted to see if fruit flies have evolved such a strategy for coping with infections by bacteria or parasitic wasps. Singh and Schlenke exposed fruit flies to two different pathogenic bacteria, as well as to the parasitic wasp Leptopilina clavipes, which lays its eggs inside and devours the fly from the inside out unless it is killed by the fly immune system.

The findings, which appear in Science, were surprising. Females who survived bacteria or wasp infection produced a much greater proportion of recombinant offspring than control, uninfected flies. The surviving mothers made their offspring more diverse.

"We believe that this is an example of what has been called transmission distortion. In this case, something is signaling these female to produce a higher proportion of offspring with recombined chromosomes than they would normally," says Singh. "The result is that they're hedging their bets, genetically speaking - creating a large number of very different offspring means that at least some of those offspring may be genetically better suited to surviving future threats from these bacteria or parasites."

Female parasitic wasp (Leptopilina heterotoma) is inserting her ovipositor into a Drosophila larva. She will lay an egg in its body cavity. Credit: Michael Martin, Reed College

Even more interesting was the discovery that this signal may somehow be transmitted even when the female is exposed to the threat in the larval stage - well before egg production (and the associated chromosomal recombination) begins.

"It is interesting that stresses occurring early in development can influence a host's reproductive machinery later in life - we don't know yet what the infection signal is or how it is maintained across metamorphosis" says Schlenke. "And there's no reason to think that this type of reproductive response to infection is unique to flies," adds Singh. "We want to know whether other species do this, because it represents a novel way that parents can influence the potential fitness of their ."

Explore further: Infection with Wolbachia bacteria curbs fighting among fruit flies

More information: Fruit flies diversify their offspring in response to parasite infection, by N.D. Singh et al. www.sciencemag.org/lookup/doi/ … 1126/science.aab1768

Related Stories

DNA which only females have

June 4, 2015

In many animal species, the chromosomes differ between the sexes. The male has a Y chromosome. In some animals, however, for example birds, it is the other way round. In birds, the females have their own sex chromosome, the ...

New thinking on regulation of sex chromosomes in fruit flies

September 19, 2011

Fruit flies have been indispensible to our understanding of genetics and biological processes in all animals, including humans. Yet, despite being one of the most studied of animals, scientists are still finding the fruit ...

Recommended for you

60 percent of coffee varieties face 'extinction risk'

January 16, 2019

Three in five species of wild coffee are at risk of extinction as a deadly mix of climate change, disease and deforestation puts the future of the world's favourite beverage in jeopardy, new research warned Wednesday.

How stem cells self-organize in the developing embryo

January 16, 2019

Embryonic development is a process of profound physical transformation, one that has challenged researchers for centuries. How do genes and molecules control forces and tissue stiffness to orchestrate the emergence of form ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.