'Fishing expedition' nets nearly tenfold increase in number of sequenced virus genomes

August 14, 2015 by Emily Caldwell, The Ohio State University

Using a specially designed computational tool as a lure, scientists have netted the genomic sequences of almost 12,500 previously uncharacterized viruses from public databases.

The finding doubles the number of recognized virus genera - a biological classification one step up from species - and increases the number of sequenced virus genomes available for study almost tenfold.

The research group studies viruses that infect , and specifically bacteria and archaea, single-cell microorganisms similar to bacteria in size, but with a different evolutionary history.

Microbes are essential contributors to all life on the planet, and viruses have a variety of influences on microbial functions that remain largely misunderstood, said Matthew Sullivan, assistant professor of microbiology at The Ohio State University and senior author of the study.

Sullivan partners with scientists studying microbes in the human gut and lung, as well as natural environments like soils and oceans. Most recently, he reported on the diversity of oceanic viral communities in a special issue of the journal Science featuring the Tara Oceans Expedition, a global study of the impact of climate change on the world's oceans.

"Virus-bacteria and virus-archaea interactions are probably quite important to the dynamics of that microbe, so if researchers are studying a microbe in a specific environment, they've been missing a big chunk of its interaction dynamics by ignoring the viruses," Sullivan said. "This work will help researchers recognize the importance of viruses in a lot of different microbes.

"In all of our studies, we're working with people who know the microbes well, and we help them decide how viruses might be helpful to the microbial system. The projects range from fundamental, basic science to applied medical science."

The research is published in the online journal eLife.

Finding a treasure trove of new virus genome sequences has opened the door to using those data to identify previously unknown microbial hosts, as well. These new possibilities are attributed to VirSorter, a developed by study lead author Simon Roux, a postdoctoral researcher in Sullivan's lab.

The sorter scoured public databases of sequenced , looking for fragments of genomes that resembled that had already been sequenced - for starters. VirSorter also "fished" for sequences by looking for genes known to help produce a protein shell that all viruses have, called a capsid.

"The idea is that bacteria don't use capsids or produce them, so any capsid gene should come from a virus," Roux said. The sorter then associated capsid genes with unfamiliar genes - those considered new, small or organized differently - that are unlikely to be produced by bacteria.

"None of these genomic features is really a smoking gun per se, but combining them led to a robust detection of 'new' viruses - viruses we did not have in the database, but can identify because they have capsid genes and a viral organization," he said.

Using microbial genomes as a data source meant researchers could link newly identified virus sequences to the proper microbial host. The scientists then tried a reverse maneuver on the data to see if virus sequences alone could be used to identify unknown hosts - and this way of analyzing the sequences could predict the host with up to 90 percent accuracy.

"We can survey a lot of environments to find new viruses, but the challenge has been answering, who do they infect?" Sullivan said. "If we can use computational tricks to predict the host, we can explore that viral-host linkage. That's a really important part of the equation."

Though viruses are generally thought to take over whatever organism they invade, Sullivan's lab has identified a few viruses, called prophages, which coexist with their host microbes and even produce genes that help the host cells compete and survive.

Viruses can't survive without a host, and the most-studied viruses linked to disease are lytic in nature: They get inside a cell and make copies of themselves, destroying the cell in the process.

But the genome sequences revealed in this study suggest that there are many more prophage-like viruses that are different in one important respect: Their genome remains separate from their microbial hosts' genome.

"The extrachromosomal form of this virus type appears quite widespread, and virtually nobody is studying these kinds of viruses," said Sullivan, who also has an appointment in civil, environmental and geodetic engineering. "That is a really different and largely unexplored phenomenon, and it's important to understand those ' ability to interact and tie into the function of those cells."

Explore further: Tiniest catch: Scientists' fishing expedition reveals viral diversity in the sea

More information: eLife, elifesciences.org/content/earl … 15/07/22/eLife.08490

Science, www.sciencemag.org/content/348/6237/1261498.full

Related Stories

Microbes scared to death by virus presence

April 2, 2015

The microbes could surrender to the harmless virus, but instead freeze in place, dormant, waiting for their potential predator to go away, according to a recent study in mBio.

Interactions of Earth's smallest players have global impact

September 19, 2014

A new study reveals the interactions among bacteria and viruses that prey on them thriving in oxygen minimum zones—stretches of ocean starved for oxygen that occur around the globe. Understanding such microbial communities ...

Recommended for you

How quinoa plants shed excess salt and thrive in saline soils

September 21, 2018

Barely heard of a couple of years ago, quinoa today is common on European supermarket shelves. The hardy plant thrives even in saline soils. Researchers from the University of Würzburg have now determined how the plant gets ...

Basking sharks can jump as high and as fast as great whites

September 20, 2018

A collaborative team of marine biologists has discovered that basking sharks, hundreds of which are found off the shores of Ireland, Cornwall, the Isle of Man and Scotland, can jump as fast and as high out of the water as ...

Decoding the structure of an RNA-based CRISPR system

September 20, 2018

Over the past several years, CRISPR-Cas9 has moved beyond the lab bench and into the public zeitgeist. This gene-editing tool CRISPR-Cas9 holds promise for correcting defects inside individual cells and potentially healing ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.