Earth-directed CME lights the skies

June 25, 2015 by Sarah Frazier And Susan Hendrix
Two views of the CME on June 20, 2015 from the Solar and Heliospheric Observatory, or SOHO. Earth-directed CMEs like this one are often called halo CMEs, because the material shooting off from the sun looks like a ring around the disk of the sun. This halo can be seen more clearly in the right-hand image called a difference image, which is created by subtracting two consecutive frames to see how the image has changed. Credit: ESA&NASA/SOHO

Earth experienced a geomagnetic storm on June 22, 2015 due to the arrival of an Earth-directed coronal mass ejection, or CME, from June 20.

The CME originated at 10:24 p.m. EDT on June 20, 2015. Coronal material exploded from the sun at about 780 miles per second, arriving at Earth at 1:59 p.m. EDT on June 22.

NOAA rated the resulting as G4, or severe. To see how this event affected Earth, visit NOAA's Space Weather Prediction Center at http://spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings.

A geomagnetic storm happens when the plasma and magnetic fields in a CME interact with Earth's magnetic field, disturbing the magnetosphere and allowing stored plasma to flow towards the .

The same produced two other CMEs in the past few days, which were pushed along by the faster Earth-directed CME from June 20.

As a result of the geomagnetic storm, aurora were sighted in several mid-latitude locations, including Virginia in the United States and in the United Kingdom.

Aurora as seen 30 miles west of Philadelphia, PA on June 23, 2015. Credit: Jeff Berkes

Aurora as seen in Louisa, Virginia on June 23, 2015. Credit: David Murr
"The most intense aurora I've ever seen. It started with a wall of light between Lake Preston and DeSmet, South Dakota, while the moon was still out." Credit: Christian Begeman

Explore further: NASA spacecraft capture an Earth directed coronal mass ejection

Related Stories

NASA sees another Earth-directed CME

August 21, 2013

On August 21, 2013 at 1:24 am EDT, the sun erupted with an Earth-directed coronal mass ejection, or CME, a solar phenomenon that can send billions of tons of particles into space and reach Earth one to three days later. These ...

Solar storm near Earth caused by fast CME

March 18, 2013

On March 17, 2013, at 1:28 a.m. EDT, the coronal mass ejection (CME) from March 15 passed by NASA's Advanced Composition Explorer (ACE) as it approached Earth. Upon interacting with the giant magnetic bubble surrounding Earth, ...

Continuing Thanksgiving eruptions on the Sun

November 26, 2012

On Nov. 23, 2012, at 8:54 a.m. EST, the sun erupted with an Earth-directed coronal mass ejection or CME. Experimental NASA research models, based on observations from the Solar Terrestrial Relations Observatory (STEREO) and ...

NASA sees a coronal mass ejection erupt from the sun

January 31, 2013

On Jan. 31, 2013 at 2:09am EST, the sun erupted with an Earth-directed coronal mass ejection or CME. Experimental NASA research models, based on observations from the Solar Terrestrial Relations Observatory (STEREO) and ESA/NASA's ...

Sun shoots out two coronal mass ejections

January 24, 2013

On Jan. 23, 2013, at 9:55 a.m. EST, the sun erupted with an Earth-directed coronal mass ejection, or CME. Experimental NASA research models, based on observations from the Solar Terrestrial Relations Observatory (STEREO) ...

Recommended for you

Hints of extra dimensions in gravitational waves?

June 28, 2017

Researchers from the Max Planck Institute for Gravitational Physics (Albert Einstein Institute/AEI) in Potsdam found that hidden dimensions – as predicted by string theory – could influence gravitational waves. In a recently ...

New 'hot Jupiter' exoplanet detected by K2 mission

June 28, 2017

(Phys.org)—An international team of astronomers has identified a new extrasolar planet from the data provided by Kepler spacecraft's prolonged mission known as K2. The newly found exoworld, designated EPIC 228735255b, is ...

Galaxy NGC 1132 has a disturbed hot halo, study finds

June 27, 2017

(Phys.org)—A new study recently published on arXiv.org reveals that the fossil group galaxy NGC 1132 (also known as UGC 2359) has a disturbed and asymmetrical hot halo. The findings provide new insights into the formation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.