How to reset a diseased cell

May 1, 2015, University of California - San Diego

In proof-of-concept experiments, researchers at University of California, San Diego School of Medicine demonstrate the ability to tune medically relevant cell behaviors by manipulating a key hub in cell communication networks. The manipulation of this communication node, reported in this week's issue of Proceedings of the National Academy of Sciences, makes it possible to reprogram large parts of a cell's signaling network instead of targeting only a single receptor or cell signaling pathway.

The potential clinical value of the basic science discovery is the ability to eventually develop techniques - drugs or gene therapy approaches, for example - that could slow or reverse the progression of diseases, such as cancer, which are driven by abnormal cell signaling along multiple upstream pathways.

"Our study shows the feasibility of targeting a hub in the cell signaling network to reset aberrant from multiple pathways and receptors," said senior author Pradipta Ghosh, MD, an associate professor of medicine.

Specifically, the UC San Diego team has engineered two peptides - protein fragments - to either turn on or turn off activity in a family of proteins called G proteins.

G protein-coupled receptors, commonly found on the surface of cells, enable cells to sense and respond to what is happening around them. About 30 percent of all prescription drugs affect cells via G .

Researchers, including members of the UC San Diego team, recently discovered that G proteins can also be activated inside cells - not just on cell membranes - by other receptors, including a protein called GIV. Its activity is implicated in cancer metastasis and other disease states. Both the "on" and "off" peptides were made from a piece of the GIV protein receptor.

In a series of cell culture experiments, the "on" peptides were shown to accelerate cells' ability to migrate after scratch-wounding, a process linked to wound healing. The "off" peptide, in contrast, reduced the aggressiveness of cancer cells and reduced the production of collagen by associated with liver fibrosis. In experiments with mice, the topical application of the "on" peptides helped skin wounds heal faster.

"The takeaway is that we can begin to tap an emerging new paradigm of G ," Ghosh said.

Explore further: Golgi trafficking controlled by G proteins

More information: Therapeutic effects of cell-permeant peptides that activate G proteins downstream of growth factors, Gary S. Ma, DOI: 10.1073/pnas.1505543112

Related Stories

Golgi trafficking controlled by G proteins

April 9, 2015

A family of proteins called G proteins are a recognized component of the communication system the human body uses to sense hormones and other chemicals in the bloodstream and to send messages to cells. In work that further ...

Enlightening cancer cells

July 1, 2014

Joint EMBO Journal paper by IST Austria and Vienna Medical University groups on engineered cell surface receptors activated by light. Small algal protein domains serve as synthetic light sensors in human cells. First application ...

Recommended for you

Triplefin fish found to have controlled iris radiance

February 21, 2018

A team of researchers with the University of Tübingen in Germany has found an example of a fish that is able to control light reflected from organs next to its pupils—a form of photolocation. In their paper published in ...

New tool tells bioengineers when to build microbial teams

February 21, 2018

Researchers at Duke University have created a framework for helping bioengineers determine when to use multiple lines of cells to manufacture a product. The work could help a variety of industries that use bacteria to produce ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.