Polymer researchers create a new class of hybrid materials (Update)

April 23, 2015, University of Akron
Revolutionary discovery leads to invention of new ‘building blocks’
A tetrahedron is a polyhedron composed of four triangular faces, three of which meet at each corner or vertex. It has six edges and four vertices.

Macromolecular science will have to add a new giant molecule to its lexicon thanks to new and cutting-edge polymer research at The University of Akron. The research team led by Stephen Z.D. Cheng, professor at UA's college of polymer science and polymer engineering, invented a new thinking pathway in the design and synthesis of macromolecules – the backbone of modern polymers – by creating an original class of giant tetrahedra.

Major technological advancement is largely driven by the discovery of new materials, and this work opens up an entirely new direction of research. The work has been done in collaboration with researchers at Peking University in China and The University of Tokyo in Japan. In creating a brand new field of study in macromolecular science, their findings are published in the April 24, 2015 issue of Science magazine.

The unique challenge of building macromolecules is to keep their material-specific properties. This requires the ability to create material designed and engineered at the nanometer scale for a specific task. Cheng and his team asked themselves, "What kind of structures do we need to transfer and amplify microscopic functionalities to macroscopic properties?"

Breaking new ground

Building on earlier work on giant surfactants, which the National Science Foundation began funding in 2009, Cheng and his team worked to development a new class of giant polyhedra. These precisely functionalized nanoparticles were achieved by extending the molecular geometry from traditional one-dimension categories of giant surfactants to three dimensions of tetrahedron shapes that are the simplest to use. "It had never been done before in soft matter, where it's engineering could be particularly useful," explains Cheng, "and it took 3 years to design and synthesize."

Since these new giant molecules are precisely and manually controlled and designed, their discovery provides great opportunities to construct new building blocks with atomic precision. "Because of the 'click' synthesis, this system is highly tunable in terms of core structure, nanoparticle functionality, and feature sizes," describes Cheng. The concepts and formation mechanisms of these supramolecular structures could be extended to other giant polyhedral molecules with different topologies and chemical compositions, giving scientists a new way to think about answering the question, "How can we organize molecules into ordered complex structures?"

Revolutionary discovery leads to invention of new ‘building blocks’
Here is a schematic illustration of the A15 phase.
Research recap

Their research progression can be recapped in three basic phases. Using computational and data-driven approaches, Cheng and his team first designed and synthesized giant tetrahedra by introducing different functionality at the tetrahedral vertexes to generate precise positional interactions. Then they found a selective, multi-step assembly process of these giant tetrahedra resulting in highly ordered supramolecular lattices including a Frank-Kasper A15 phase at a nanometer scale. Finally, they observed the structure lattice in real space of the Frank-Kasper A15 phase under transmission electron microscopy, which in and of itself is a novel action.

This new class of hybrid materials covers the development of a diverse range of novel applications. Cheng's team is working with professionals from a wide variety of fields, asking, "What problem requires solving? What do you need?" This process helps to ensure the material can be used to create commercially viable solutions.

Cheng foresees that this new giant molecule can deliver a previously unexplored examination into a new class of advanced functional materials with innovative electric, magnetic and optic functions. "For example," says Cheng, "we are currently exploring the intriguing functional properties of light ceramic materials with soft-matter characteristics, often called 'soft-ceramics.' These structures exhibit certain mechanical elasticity as opposed to the brittleness of common ceramics."

Explore further: Controlling the 'length' of supramolecular polymers through self-organization

More information: — "Supramolecular lattices from tetrahedral nanobuilding blocks," Science, www.sciencemag.org/lookup/doi/ … 1126/science.aab0478

— "Selective assemblies of giant tetrahedra via precisely controlled positional interactions." Science 24 April 2015: Vol. 348 no. 6233 pp. 424-428 DOI: 10.1126/science.aaa2421 . www.sciencemag.org/content/348/6233/424.abstract

Related Stories

Gadget genius

July 26, 2013

University of Akron researchers have developed new materials that function on a nanoscale, which could lead to the creation of lighter laptops, slimmer televisions and crisper smartphone visual displays.

Researchers at UA developing next-gen conductive polymers

December 23, 2010

(PhysOrg.com) -- Conductive polymers, while not quite wonder materials, have the potential for being so and University of Akron polymer scientists and polymer engineers are focused on developing the next generation of the ...

A new approach to engineering the materials of the future

April 22, 2014

Some of the most interesting and fascinating electronic devices that will someday be available to consumers, from paper-thin computers to electronic fabric, will be the result of advanced materials designed by scientists. ...

Fine-tuned supramolecular polymerization

February 5, 2015

In nature, supramolecular complexes—chain-like structures that are composed of many small units linked mainly by weak non-covalent bonds—are assembled and disassembled in a precisely controlled way. Now, in work published ...

Recommended for you

Scientists discover new 'architecture' in corn

January 21, 2019

New research on the U.S.'s most economically important agricultural plant—corn—has revealed a different internal structure of the plant than previously thought, which can help optimize how corn is converted into ethanol.

Targeting 'hidden pocket' for treatment of stroke and seizure

January 19, 2019

The ideal drug is one that only affects the exact cells and neurons it is designed to treat, without unwanted side effects. This concept is especially important when treating the delicate and complex human brain. Now, scientists ...

Artificially produced cells communicate with each other

January 18, 2019

Friedrich Simmel and Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, ...

Using bacteria to create a water filter that kills bacteria

January 18, 2019

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world's population will be living in water-stressed areas, which is why access to clean water is one of the National Academy ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.