Bacteria inhibit bat-killing fungus, could combat white-nose syndrome

April 8, 2015, University of California - Santa Cruz
A northern long-eared bat was affected by white-nose syndrome in Illinois. Credit: J.R. Hoyt.

Bacteria found naturally on some bats may prove useful in controlling the deadly fungal disease known as white-nose syndrome, which has devastated bat populations throughout eastern North America and continues to spread across the continent. Scientists at the University of California, Santa Cruz, isolated bacteria that strongly inhibited the growth of the white-nose syndrome fungus in laboratory tests.

Experiments are now in progress to see if treating bats with the bacteria can protect them from the , said Joseph Hoyt, a UC Santa Cruz graduate student who led the study. "We are analyzing data from tests on live bats now, and if the results are positive, the next step would be a small field trial," he said.

The results of the laboratory studies were published April 8 in PLoS ONE. Hoyt isolated bacteria from the skin of four and tested the isolates for their ability to inhibit the growth of the fungus. Six bacterial isolates (all in the genus Pseudomonas) showed promise and were tested more extensively. All six significantly inhibited growth of the fungus, and two isolates performed especially well in suppressing fungal growth for more than 35 days.

"What's promising is that the bacteria that can inhibit the fungus naturally occur on the skin of bats. These bacteria may just be at too low a level to have an effect on the disease, but augmenting them to higher abundances may provide a beneficial effect," Hoyt said.

The researchers hope that a bacterial spray applied to bats during hibernation could suppress the fungus enough to help the bats survive the winter. The fungus that causes white-nose syndrome (Pseudogymnoascus destructans) grows on the exposed skin of bats' noses, ears, and wings during hibernation, when the bats' drop. Previous research by Kilpatrick's lab has shown that the can infect nearly every bat in a hibernating colony, but bats that survive the winter are able to clear the infection when they emerge from hibernation and their body temperatures rise.

UC Santa Cruz graduate student Joseph Hoyt examines a little brown bat for signs of white-nose syndrome outside a mine in New York. Credit: K. E. Langwig.
"The potential for a treatment is exciting, because this disease is raging across the country," said coauthor Marm Kilpatrick, professor of ecology and evolutionary biology at UC Santa Cruz. Kilpatrick is a wildlife disease expert whose lab has been working with state and federal wildlife agencies and other partners to track the spread of white-nose syndrome, which was first discovered in New York state in 2006.

Four bat species have been hit especially hard by the disease, with some regional populations declining by more than 90 percent. One species in particular, the northern long-eared bat, appears headed toward extinction, Kilpatrick said. "Everywhere the disease has been for a couple of years, this bat is gone. We don't have any tools right now to protect this species," he said.

According to Hoyt, the new findings raise the possibility that naturally occurring bacteria could partially explain some of the differences seen in the impacts of the disease on different species. The isolates with the strongest inhibitory properties were cultured from a bat species that has suffered lower mortality from than other species. More research is needed, however, to determine if disease severity is related to the found on wild . "This study is just the first step in investigating that possibility," Hoyt said.

Explore further: Study of deadly bat disease finds surprising seasonal pattern of infections

Related Stories

How does white-nose syndrome kill bats?

January 5, 2015

For the first time, scientists have developed a detailed explanation of how white-nose syndrome (WNS) is killing millions of bats in North America, according to a new study by the U.S. Geological Survey and the University ...

Fungus that's killing millions of bats 'isn't going away'

November 5, 2013

University of Illinois researchers say that an infectious and lethal cold-loving fungus that has killed an estimated 6 million bats in North America can persist indefinitely in caves whether there are bats in them or not.

US gives threatened status to northern long-eared bat

April 1, 2015

The federal government said Wednesday that it is listing the northern long-eared bat as threatened, giving new protections to a species that has been nearly wiped out in some areas by the spread of a fungal disease.

Recommended for you

Floodplain forests under threat

March 19, 2019

A team from the Institute of Forest Sciences at the University of Freiburg shows that the extraction of ground water for industry and households is increasingly damaging floodplain forests in Europe given the increasing intensity ...

Scientists discover common blueprint for protein antibiotics

March 19, 2019

A discovery by researchers at the Los Angeles Biomedical Research Institute (LA BioMed) has uncovered a common blueprint for proteins that have antimicrobial properties. This finding opens the door to design and development ...

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.