Computer simulation of vortex-induced motion improves offshore drill rig safety

March 25, 2015, Los Alamos National Laboratory
A simulation of vortex induced motion shows how ocean currents affect offshore oil rigs.

Los Alamos National Laboratory mechanical and thermal engineering researchers' efforts to solve the complex problem of how ocean currents affect the infrastructure of floating oilrigs and their computational fluid dynamics (CFD) numerical simulations received recognition from ANSYS Inc., a company that provides computer-based engineering simulation capabilities.

"Because energy resources are in demand, and most of the Earth is covered by water, we are going into deeper and more challenging waters to meet our energy needs," said Dusan Spernjak, of the Laboratory's mechanical and thermal engineering team. "Designing a floating structure for offshore deep water oil drilling is a challenging task because drilling starts deep under the sea surface with no infrastructure in place."

Vortex-induced motion (VIM) is a complex problem that occurs when there are highly turbulent flow and fluid-solid interaction phenomena. The available experimental data are very limited, especially from field measurements. The large size of the problem and complex physics calls for advanced using supercomputers to solve VIM.

Spernjack said that it is important to minimize the motion of drilling platforms caused by vortex shedding from . Vortex shedding affects the integrity of key components such as riser and mooring systems of the offshore drilling station, which directly impact system safety.

In the vortex-induced motion study, Los Alamos researchers focused on the motion of the floating structure resulting from complex fluid-structure interaction and vortex shedding from sea currents. The team performed a comprehensive parametric sensitivity study in which they tested different turbulence models and other modeling parameters. The researchers confirmed the results using extensive experimental measurements in a tow tank facility, which tests hydrodynamics and creates functional waves.

The simulations reveal insights into the physics of vortex shedding and VIM at different length and time scales. The immediate benefits include the improved process for design optimization for large floating structures, and possible strategies for vortex-induced motion improvement.

The Los Alamos mechanical and thermal engineering team's CFD project finished as a finalist in ANSYS's Hall of Fame.

"Recognition from ANSYS for our effort to improve offshore drilling safety brings global exposure to the diverse science and advanced engineering conducted by the Laboratory and our team," Spernjak said. "Making their Hall of Fame is the result of a great team effort, from our postdoc Seung Jun Kim to our industry partners, with support from Los Alamos high-performance computing."

Explore further: Controlling core switching in Pac-man disks

Related Stories

Controlling core switching in Pac-man disks

December 24, 2014

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage devices such as ...

Mathematicians solve 60-year-old problem

March 23, 2015

A team of researchers, led by Rensselaer Polytechnic Institute professor Yuri Lvov, has found an elegant explanation for the long-standing Fermi-Pasta-Ulam (FPU) problem, first proposed in 1953, investigated with one of the ...

Researchers explain emergence of bacterial vortex

June 23, 2014

When a bunch of B. subtilis bacteria are confined within a droplet of water, a very strange thing happens. The chaotic motion of all those individual swimmers spontaneously organizes into a swirling vortex, with bacteria ...

Los Alamos to get new supercomputer

July 10, 2014

Los Alamos National Laboratory is getting a next-generation supercomputer to help maintain the safety and effectiveness of the nation's nuclear weapons.

Recommended for you

Researchers capture an image of negative capacitance in action

January 21, 2019

For the first time ever, an international team of researchers imaged the microscopic state of negative capacitance. This novel result provides researchers with fundamental, atomistic insight into the physics of negative capacitance, ...

Toward ultrafast spintronics

January 21, 2019

Electronics have advanced through continuous improvements in microprocessor technology since the 1960s. However, this process of refinement is projected to stall in the near future due to constraints imposed by the laws of ...

Classic double-slit experiment in a new light

January 18, 2019

An international research team led by physicists from the University of Cologne has implemented a new variant of the basic double-slit experiment using resonant inelastic X-ray scattering at the European Synchrotron ESRF ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.