Quantum computing now one step closer with defect-free logic gate

March 19, 2015, Springer

What does hair styling have in common with quantum computing? The braiding pattern has inspired scientists as a potential new approach to quantum calculation. The idea is to rely on a network of intersecting chains, or nanowires, containing two-dimensional quasi-particles. The way these quasi-particles evolve in space time produces a braid-like pattern. These braids could then be used as the logic gate that provides the logical function required for calculations in computers. Due to their tight assembly, such braids are much more difficult to destabilise and less error-prone. Yet, local defects can still arise along nanowires.

In a study published in EPJ B, Jelena Klinovaja from the University of Basel, and Daniel Loss from Harvard University, Cambridge, MA, USA, identify the potential sources of computer errors arising from these defects.

Scientists have now created a 2D network of intersecting nanowires within which quasi particles create braided patterns in ; these are called Majorana Bound States, or MBSs. In this context, the electrons' inner degree of freedom, called spin, interacts with their own movement, leading to spin-orbit interaction (SOI). The trouble is that the SOI direction is not uniform in such braided networks, resulting in local defects along nanowires and at nanowire junctions.

The authors therefore focus on how such defects arise in relation to the SOI direction. They show that the , in which the SOI changes direction, host novel states referred to as Fermionic Bound States (FBSs). These FBSs, the study shows, occur simultaneously with Majorana fermions, albeit at different locations in the network. FBSs could therefore destabilise quantum information units, or qubits, and accelerate their loss of coherence, thus becoming a source of errors in . The authors believe that such new knowledge of the characteristics of FBSs can help identify the best remedy to avoid their negative effects on MBSs.

Explore further: Exotic state of matter propels quantum computing theory

More information: "Fermionic and Majorana Bound States in Hybrid Nanowires with Non-Uniform Spin-Orbit Interaction," Eur. Phys. J. B 88: 62, DOI: 10.1140/epjb/e2015-50882-2

Related Stories

Exotic state of matter propels quantum computing theory

July 23, 2014

So far it exists mainly in theory, but if invented, the large-scale quantum computer would change computing forever. Rather than the classical data-encoding method using binary digits, a quantum computer would process information ...

Quantum computing with braids in flatland

November 1, 2010

Exotic anyon quasiparticles trapped in two dimensional sheets can entangle into braided structures that are less susceptible to the disturbances that disrupt individual quasiparticles in quantum computations.

Probing electron behaviour at the tips of nanocones

February 5, 2015

One of the ways of improving electrons manipulation is though better control over one of their inner characteristics, called spin. This approach is the object of an entire field of study, known as spintronics. Now, Richard ...

Quantum effects in nanowires at room temperature

August 28, 2013

Nano technologists at the University of Twente research institute MESA+ have, for the first time, demonstrated quantum effects in tiny nanowires of iridium atoms. These effects, which occur at room temperature, are responsible ...

Recommended for you

Zirconium isotope a master at neutron capture

January 17, 2019

The probability that a nucleus will absorb a neutron is important to many areas of nuclear science, including the production of elements in the cosmos, reactor performance, nuclear medicine and defense applications.

Mechanism helps explain the ear's exquisite sensitivity

January 16, 2019

The human ear, like those of other mammals, is so extraordinarily sensitive that it can detect sound-wave-induced vibrations of the eardrum that move by less than the width of an atom. Now, researchers at MIT have discovered ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.