Medical nanoparticles: local treatment of lung cancer

March 5, 2015
Medical nanoparticles: local treatment of lung cancer
Tumor tissue in the lung. Credit: Sabine van Rijt, CPC/iLBD, Helmholtz Zentrum München

Nanoparticles can function as carriers for medicines to combat lung cancer: Working in a joint project at the NIM (Nanosystems Initiative Munich) Excellence Cluster, scientists from the Helmholtz Zentrum München (HMGU) and the Ludwig-Maximilians-Universität (LMU) in Munich have developed nanocarriers that site-selectively release medicines/drugs at the tumor site in human and mouse lungs. In the journal, ACS Nano, the scientists reported that this approach led to a significant increase in the effectiveness of current cancer medicines in lung tumour tissue.

Nanoparticles are extremely small particles that can be modified for a variety of uses in the medical field. For example, can be engineered to be able to transport medicines specifically to the disease site while not interfering with healthy body parts.

Selective drug transport verified in human tissue for the first time

The Munich scientists have developed nanocarriers that only release the carried drugs in lung tumour areas. The team headed by Silke Meiners, Oliver Eickelberg and Sabine van Rijt from the Comprehensive Pneumology Center (HMGU), working with colleagues from the Chemistry Department (LMU) headed by Thomas Bein, were able to show nanoparticles' selective drug release to human lung for the first time.

Tumour specific proteins were used to release drugs from the nanocarriers

Tumour in the lung contains high concentrations of certain proteases, which are enzymes that break down and cut specific proteins. The scientists took advantage of this by modifying the nanocarriers with a protective layer that only these proteases can break down, a process that then releases the drug. Protease concentrations in the healthy lung tissue are too low to cleave this protective layer and so the medicines stay protected in the nanocarrier.

"Using these nanocarriers we can very selectively release a drug such as a chemotherapeutic agent specifically at the lung tumour," reports research group leader Meiners. "We observed that the drug's effectiveness in the tumour tissue was 10 to 25 times greater compared to when the drugs were used on their own. At the same time, this approach also makes it possible to decrease the total dose of medicines and consequently to reduce undesirable effects."

Further studies will now be directed to examine the safety of the nanocarriers in vivo and verify the clinical efficacy in an advanced tumour mouse model.

Explore further: Heating targeted cancer drugs increases uptake in tumour cells

More information: van Rijt, S. et al. (2015): "Protease Mediated Release of Chemotherapeutics From Mesoporous Silica Nanoparticles to Ex Vivo Human and Mouse Lung Tumors," ACS Nano. DOI: 10.1021/nn5070343, Link to publication: http://pubs.acs.org/doi/abs/10.1021/nn5070343

Related Stories

Recommended for you

Graphene photodetector enhanced by fractal golden 'snowflake'

January 16, 2017

(Phys.org)—Researchers have found that a snowflake-like fractal design, in which the same pattern repeats at smaller and smaller scales, can increase graphene's inherently low optical absorption. The results lead to graphene ...

Nanoscale view of energy storage

January 16, 2017

In a lab 18 feet below the Engineering Quad of Stanford University, researchers in the Dionne lab camped out with one of the most advanced microscopes in the world to capture an unimaginably small reaction.

Scientists create first 2-D electride

January 11, 2017

(Phys.org)—Researchers have brought electrides into the nanoregime by synthesizing the first 2D electride material. Electrides are ionic compounds, which are made of negative and positive ions. But in electrides, the negative ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.