Discovery could yield more efficient portable electronics, solar cells

March 23, 2015 by Terry Devitt, University of Wisconsin-Madison
solar cells

By figuring out how to precisely order the molecules that make up what scientists call organic glass—the materials at the heart of some electronic displays, light-emitting diodes and solar cells—a team of chemists from the University of Wisconsin-Madison has set the stage for more efficient and sturdier portable electronic devices and possibly a new generation of solar cells based on organic materials.

Writing this week (March 23, 2015) in the Proceedings of the National Academy of Sciences (PNAS), a team led by UW-Madison chemistry Professor Mark Ediger describes a method capable of routinely imposing order on organic glasses by enabling their production so that the molecules that make up the glasses are ideally positioned.

"Glasses are usually isotropic, meaning their properties are the same from any direction," explains Ediger, a world expert on glass, who conducted the study with UW-Madison researchers Shakeel Dalal and Diane Walters.

Glass, says Ediger, can be made from any number of materials. The most familiar, of course, is window glass, made primarily of the mineral silica. But other types of glass can be made of metal and other materials, and nature makes its own variants such as the volcanic glass obsidian. Organic glasses are made using materials based on carbon instead of silica.

The new organic glasses devised by Ediger's team "have the molecules oriented in specific ways, standing up or lying down," he explains. The orientation affects performance and can confer greater levels of efficiency and durability in the devices they are used in.

While there is precedent for making organic glasses like those described in the new PNAS report, Ediger's team, working with Juan de Pablo and Ivan Lyubimov of the University of Chicago's Institute for Molecular Engineering, delved deep into the process and discovered the key for controlling molecular orientation during manufacture. The process can be exploited to easily and routinely make organic glasses whose molecules are better regimented, conferring enhanced properties of interest.

The discovery is important because organic glasses are widely used in what are called organic , the active elements of the displays used in some portable consumer electronics such as cellphones. Perhaps more significantly, the finding by Ediger's team could help advance improved photovoltaic devices, such as , which convert light to electricity.

"We're thinking about the next generation of photovoltaics," says Ediger, noting that the use of organic glasses in things like solar cells has so far been limited. "That technology is commercially immature and improved control over material properties could have a big impact."

Organic solar cells may prove less expensive to produce than the crystalline silicone photovoltaics commonly used now, he says.

In portable electronics, the work could help underpin new ways to build more durable screens. As many as 150 million such displays are manufactured for cellphones alone each year and the new discovery could result in displays that produce more light using as much as 30 percent less energy.

The key identified by Ediger and his colleagues lies in a process called physical vapor deposition, which is how the organic light-emitting diodes that make up portable are mass produced. The process for making the diodes occurs in a vacuum chamber where molecules are heated and evaporated, and then condense in ultrathin layers on a substrate to form the light-emitting display of a cellphone or other device.

"What is new in our work is that we have systematically explored the important control variable, the substrate temperature, and discovered a general pattern for molecular orientation that can be exploited," says Ediger. "Furthermore, we now understand what controls the orientation trapped in particular glasses."

The upshot, he says, could be substantially more energy efficient than those currently in use.

Explore further: Fast-tracking the manufacture of glasses

More information: Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors , PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1421042112

Related Stories

Fast-tracking the manufacture of glasses

June 29, 2010

Old glass is not the same as new glass -- and the difference is not just due to manufacturing techniques. Unlike crystalline solids, glasses change as they age, increasing packing density and stability. Ideally, a glass should ...

Study reveals ordinary glass's extraordinary properties

January 6, 2013

Researchers at the universities of Chicago and Wisconsin-Madison raise the possibility of designing ultrastable glasses at the molecular level via a vapor-deposition process. Ultrastable glasses could find potential applications ...

Transparent oxide glass with rubber-like property

December 3, 2014

Flexible substances that can withstand high temperatures are much sought after for various industrial and engineering applications. Types of glass made from oxides are hard at room temperature and fracture easily, but scientists ...

Engineers solve energy puzzle

November 6, 2011

University of Toronto materials science and engineering (MSE) researchers have demonstrated for the first time the key mechanism behind how energy levels align in a critical group of advanced materials. This discovery is ...

Semiconductor works better when hitched to graphene

February 20, 2015

Graphene – a one-atom-thick sheet of carbon with highly desirable electrical properties, flexibility and strength – shows great promise for future electronics, advanced solar cells, protective coatings and other uses, ...

Recommended for you

Apple pivot led by star-packed video service

March 25, 2019

With Hollywood stars galore, Apple unveiled its streaming video plans Monday along with news and game subscription offerings as part of an effort to shift its focus to digital content and services to break free of its reliance ...

How tree diversity regulates invading forest pests

March 25, 2019

A national-scale study of U.S. forests found strong relationships between the diversity of native tree species and the number of nonnative pests that pose economic and ecological threats to the nation's forests.

Scientists solve mystery shrouding oldest animal fossils

March 25, 2019

Scientists from The Australian National University (ANU) have discovered that 558 million-year-old Dickinsonia fossils do not reveal all of the features of the earliest known animals, which potentially had mouths and guts.

Earth's deep mantle flows dynamically

March 25, 2019

As ancient ocean floors plunge over 1,000 km into the Earth's deep interior, they cause hot rock in the lower mantle to flow much more dynamically than previously thought, finds a new UCL-led study.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

PPihkala
not rated yet Mar 24, 2015
Has anyone studied how the properties of glasses would change if they were subjected to strong magnetic field during manufacturing?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.