Researchers find unusually elastic protein

January 26, 2015, Heidelberg University

Scientists at Heidelberg University have discovered an unusually elastic protein in one of the most ancient groups of animals, the over 600-million-year-old cnidarians. The protein is a part of the "weapons system" that the cnidarians use: a kind of harpoon launched from their body at extremely high speed. The discovery of the hitherto unknown protein in the freshwater polyp Hydra suggests that the molecular mechanism of elasticity could have originated in the cnidarians and evolved to discharge a deadly weapon. Due to the similarity of the protein's amino acid sequence to spidroin of spider silk, the researchers from the Centre for Organismal Studies dubbed the elastic protein cnidoin. The results of the research were published in the journal BMC Biology.

Elastomeric proteins evolved in a diverse range of animals and often fulfil highly specialised biological functions as the elastin in the pulmonary alveoli of higher vertebrates, the resilin in the wing joints of insects or the spidroin in the threads of . They give tissues mechanical properties that exceed those of artificial materials. These proteins, known as elastomers, share a common property – structurally disordered, repetitive protein sequences that store energy when a molecule is stretched which then can be used in the form of a movement after release. These movements can be rhythmical, as in the blood vessels leaving the heart. Or they can be single, explosive movements, as in the jump of a grasshopper.

In their experiments on the freshwater polyp Hydra, the research team of Assistant Professor Dr. Suat Özbek and Prof. Dr. Thomas Holstein at the Centre for Organismal Studies (COS) demonstrated that cnidoin is part of the cnidarian weaponry – the stinging capsules. These organelles help jellyfish, corals and sea anemones capture prey and ward off enemies. When touched, a tubule is ejected within nanoseconds in a harpoon-like fashion from the interior of the highly pressurised capsule. The discharge of the stinging thread is one of the fastest processes known in the animal kingdom. Its barbed tip injects poisons through the stinging thread that paralyse or kill the attacker or prey within seconds. "Cnidoin is a structural component of the capsule wall, which is elastically stretched prior to discharge and firing of the harpoon," explains Dr. Özbek. 

Together with other researchers in Heidelberg and Munich, the scientists at COS investigated the biomechanical properties of cnidoin. Force measurements were performed on single molecules and computer simulations conducted. The special properties of the elastic protein are principally responsible for the enormous acceleration of the "harpoon tip" that occurs during the discharge process and, according to Dr. Özbek, exceeds five million g. "The biomechanical properties of cnidoin are comparable to those of other elastomers. However, cnidoin evidences extraordinarily fast recoil, probably due to the extensive cross-linking to the dense capsule wall."

The researcher points out that the of elasticity emerged several times in the animal kingdom, independently of each other. "From an evolutionary standpoint, however, cnidoin is oldest elastic protein reported so far," states Suat Özbek. "We therefore assume that this elasticity originated in the cnidaria and evolved as part of their 'weapons system'."

Prof. Dr. Wolfgang Petrich of Heidelberg University's Kirchhoff Institute for Physics and Prof. Dr. Frauke Gräter of the Heidelberg Institute for Theoretical Studies (HITS) also participated in the research, along with physicist Dr. Martin Benoit from LMU Munich.

Explore further: Seeing without eyes: Hydra stinging cells respond to light

More information: A. Beckmann, S. Xiao, J.P. Müller, D. Mercadante, T. Nüchter, N. Kröger, F. Langhojer, W. Petrich, T.W. Holstein, M. Benoit, F. Gräter and S. Özbek: "A Fast Recoiling Silk-like Elastomer Facilitates Nanosecond Nematocyst Discharge," BMC Biology.2015, 13:3 (16 January 2015), DOI: 10.1186/s12915-014-0113-1

Related Stories

Seeing without eyes: Hydra stinging cells respond to light

March 4, 2012

In the absence of eyes, the fresh water polyp, Hydra magnipapillata, nevertheless reacts to light. They are diurnal, hunting during the day, and are known to move, looping end over end, or contract, in response to light. ...

Protein origami: Quick folders are the best

January 31, 2013

The evolutionary history of proteins shows that protein folding is an important factor. Especially the speed of protein folding plays a key role. This was the result of a computer analysis carried out by researchers at the ...

"Funnel" attracts bonding partners to biomolecule

September 24, 2014

New experimental technologies, such as terahertz absorption spectroscopy, pave the way for studies of the dynamics of water molecules surrounding biomolecules. Using this method, the researchers proved some time ago that ...

First steps for Hector the robot stick insect

December 16, 2014

A research team at Bielefeld University has succeeded in teaching the only robot of its kind in the world how to walk. Its first steps have been recorded in a video. The robot is called Hector, and its construction is modelled ...

Searching for the origin of muscles

June 28, 2012

Ulrich Technau from the University of Vienna has addressed the origin of musculature. His analysis reveals for the first time that some central components of muscles of higher animals are much older than previously assumed. ...

Recommended for you

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

Levitating objects with light

March 19, 2019

Researchers at Caltech have designed a way to levitate and propel objects using only light, by creating specific nanoscale patterning on the objects' surfaces.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.