Seed germination regulators for optimising harvests

December 10, 2014, Okayama University
Figure caption: Unrooted phylogenetic (or evolutionary) tree showing the relationships between species. Trees were constructed from the deduced amino acid sequences of the domains of the proteins LEC1 type (a regulator of seed maturation in Arabidopsis), non-LEC1 type and their orthologues - genes in other species sharing the same ancestry. Scale bars represent amino acid substitutions per site.

The timing of seed germination is crucial for optimising harvests. Pre-harvest sprouting is prevented when seeds enter a dormant state, but a high level of dormancy has economic repercussions. Now, using RNA and sequence analysis and comparisons with other plants, researchers at Okayama University have unravelled some of the mechanisms regulating seed maturation and dormancy in wheat.

Studies of arabidopsis - a small flowering plant related to cabbage and mustard – have identified transcription factors that regulate its seed and dormancy. However few studies have yet investigated seed maturation regulators in , or monocots in general. Monocots – plants with one seed leaf as opposed to dicots, which have two – include rice, wheat, maize, sugar cane, pasture grass and bamboo, so they are particularly economically significant.

Kazuhide Rikiishi and Masahiko Maekawa grew seedlings of nine varieties of wheat. They harvested the seeds every 10 days until 60 days after pollination, and incubated the seeds on petri dishes. They then counted the number of seeds on each petri dish each day to monitor germination, and analysed the RNA of samples at different stages after pollination.

The researchers found genes specific to certain tissues and stages of development that were similar to the seed maturation regulators reported for Arabidopsis. They also showed how these genes affect seed dormancy in wheat and the pathways for regulating seed dormancy.

Cereal with low dormancy are now used regularly to boost production and pre-harvest sprouting has become an increasingly troubling issue. The authors conclude in their report, "The regulatory networks of seed maturation might be conserved for the control of seed dormancy in dicot and monocot species."

Explore further: Seed dormancy, a property that prevents germination, already existed 360 million years ago

More information: "Seed Maturation Regulators Are Related to the Control of Seed Dormancy in Wheat (Triticum aestivum L.)." PLoS ONE 9(9): e107618. DOI: 10.1371/journal.pone.0107618

Related Stories

Plants with dormant seeds give rise to more species

April 18, 2014

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Seed workshop bears conservation fruits 

April 7, 2014

Researchers have pooled their expertise to investigate factors that affect the survival of seeds, resulting in a framework that can help both eradicate weeds and maintain desirable plant populations.

Recommended for you

Semimetals are high conductors

March 18, 2019

Researchers in China and at UC Davis have measured high conductivity in very thin layers of niobium arsenide, a type of material called a Weyl semimetal. The material has about three times the conductivity of copper at room ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.