Biology trumps chemistry in open ocean

November 24, 2014
ocean

Single-cell phytoplankton in the ocean are responsible for roughly half of global oxygen production, despite vast tracts of the open ocean that are devoid of life-sustaining nutrients. While phytoplankton's ability to adjust their physiology to exploit limited nutrients in the open ocean has been well documented, little is understood about how variations in microbial biodiversity—the number and variety of marine microbes - affects global ocean function.

In a paper published in PNAS on Monday November 24, scientists laid out a robust new framework based on in situ observations that will allow scientists to describe and understand how phytoplankton assimilate limited concentrations of phosphorus, a key , in the in ways that better reflect what is actually occurring in the marine environment. This is an important advance because nutrient uptake is a central property of ocean biogeochemistry, and in many regions controls carbon dioxide fixation, which ultimately can play a role in mitigating climate change.

"Until now, our understanding of how phytoplankton assimilate nutrients in an extremely nutrient-limited environment was based on lab cultures that poorly represented what happens in natural populations," explained Michael Lomas of Bigelow Laboratory for Ocean Sciences, who co-led the study with Adam Martiny of University of California - Irvine, and Simon Levin and Juan Bonachela of Princeton University. "Now we can quantify how phytoplankton are taking up nutrients in the real world, which provides much more meaningful data that will ultimately improve our understanding of their role in global ocean function and climate regulation."

To address the knowledge gap about the globally-relevant ecosystem process of nutrient uptake, researchers worked to identify how different levels of microbial biodiversity influenced in situ phosphorus uptake in the Western Subtropical North Atlantic Ocean. Specifically, they focused on how different phytoplankton taxa assimilated phosphorus in the same region, and how phosphorus uptake by those individual taxa varied across regions with different . They found that phytoplankton were much more efficient at assimilating vanishingly low phosphorus concentrations than would have been predicted from culture research. Moreover, individual phytoplankton continually optimized their ability to assimilate phosphorus as environmental phosphorus concentrations increased. This finding runs counter to the commonly held, and widely used, view that their ability to assimilate saturates as concentrations increase.

"Prior climate models didn't take into account how natural phytoplankton populations vary in their ability to take up key nutrients, "said Martiny. "We were able to fill in this gap through fieldwork and advanced analytical techniques. The outcome is the first comprehensive in situ quantification of capabilities among dominant phytoplankton groups in the North Atlantic Ocean that takes into account . "

Explore further: How do phytoplankton survive a scarcity of a critical nutrient? New study up-ends conventional wisdom

More information: Impact of ocean phytoplankton diversity on phosphate uptake, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1420760111

Related Stories

NASA ocean data shows 'climate dance' of plankton

September 30, 2014

The greens and blues of the ocean color from NASA satellite data have provided new insights into how climate and ecosystem processes affect the growth cycles of phytoplankton—microscopic aquatic plants important for fish ...

Recommended for you

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

gkam
1 / 5 (3) Nov 24, 2014
This is absolutely essential. That is the very bottom of the Food Chain. We are on the top.
gkam
1 / 5 (2) Nov 24, 2014
With the plankton gone, we won't have enough Soylent Green!!
BSmith
not rated yet Nov 24, 2014
Old news. In 1975 I read a copy of Harvard magazine that said essentially the same thing. Does no one do any preliminary research anymore?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.