Longstanding bottleneck in crystal structure prediction solved

September 25, 2014, Princeton University
Orthographic projections of a cluster cut from the benzene crystal along the two directions Credit: Image courtesy of Science/AAAS

Two years after its release, the HIV-1 drug Ritonavir was pulled from the market. Scientists discovered that the drug had crystallized into a slightly different form—called a polymorph—that was less soluble and made it ineffective as a treatment.

The various patterns that atoms of a solid material can adopt, called crystal structures, can have a huge impact on its properties. Being able to accurately predict the most stable for a material has been a longstanding challenge for scientists.

"The holy grail of this particular problem is to say, I've written down this chemical formula for a material, and then just from the formula be able to predict its structure—a goal since the dawn of chemistry," said Garnet K. L. Chan, the A. Barton Hepburn Professor of Theoretical Chemistry at Princeton University. One major bottleneck towards achieving this goal has been to compute the lattice energy—the energy associated with a structure—to sufficient accuracy to distinguish between several competing polymorphs.

Chan's group has now accomplished this task, publishing their results in the journal Science on August 8. The research team demonstrated that new techniques could be used to calculate the lattice energy of benzene, a simple yet important molecule in pharmaceutical and energy research, to sub-kilojoule per mole accuracy—a level of certainty that allows polymorphism to be resolved.

Chan credited this success to the combined application of advances in the field of quantum mechanics over the last 15 years. "Some of these advances allow you to resolve the behavior of electrons more finely, do computations on more atoms more quickly, and allow you to consider more electrons at the same time," Chan said. "It's a triumph of the modern field of quantum chemistry that we can now determine the behavior of Nature to this level of precision."

The group's next goal is to shorten the time it takes to run the desired calculations. These initial calculations consumed several months of computer time, Chan said, but with some practical modifications, future predictions should take only a few hours.

Explore further: Enhanced efficiency when determining band gap in solids

More information: Yang, J.; Hu, W.; Usvyat, D.; Matthews, D.; Schutz, M.; Chan, G. K. L. "Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mol accuracy." Science 2014, 345, 640. DOI: 10.1126/science.1254419

Related Stories

Enhanced efficiency when determining band gap in solids

November 23, 2010

(PhysOrg.com) -- "With density functional theory, we are able to put different elements in a computer simulation and do calculations based on quantum mechanics to find out about their different properties," Maria Chan tells ...

Laser pulse turns glass into a metal

August 26, 2014

For tiny fractions of a second, quartz glass can take on metallic properties, when it is illuminated be a laser pulse. This has been shown by calculations at the Vienna University of Technology. The effect could be used to ...

Simulation method identifies materials for better batteries

September 15, 2014

(Phys.org) —Researchers from the University of Cambridge have devised a new simulation technique which reliably predicts the structure and behaviour of different materials, in order to accelerate the development of next-generation ...

Creating a pure spin current in graphene

February 7, 2011

(PhysOrg.com) -- Graphene is a material that has the potential for a number of future applications. Scientists are interested in using graphene for quantum computing and also as a replacement for electronics. However, in ...

Recommended for you

Physicists discover new class of pentaquarks

March 26, 2019

Tomasz Skwarnicki, professor of physics in the College of Arts and Sciences at Syracuse University, has uncovered new information about a class of particles called pentaquarks. His findings could lead to a new understanding ...

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.