Continuing Bragg legacy of structure determination

September 7, 2014, University of Adelaide

Over 100 years since the Nobel Prize-winning father and son team Sir William and Sir Lawrence Bragg pioneered the use of X-rays to determine crystal structure, University of Adelaide researchers have made significant new advances in the field.

Published in the journal Nature Chemistry today, Associate Professors Christian Doonan and Christopher Sumby and their team in the School of Chemistry and Physics, have developed a new material for examining structures using X-rays without first having to crystallise the substance.

"2014 is the International Year of Crystallography, recognising the importance of this 100-year-old science and how it underpins a vast range of the technological developments of our modern society," says Associate Professor Sumby.

"Today, is an area of science that's still providing new insights into the structures of materials – our new research is a prime example of that. It allows us to study chemical reactions that have just happened, or potentially even while they are still happening, which we can't do using normal crystallography."

The researchers are using a new nanomaterial – called a metal-organic framework – to bind the metal complex catalyst and its chemical reactants in place.

"We can then examine the structures of the reaction products using X-rays without having to isolate the product or grow crystals," says Associate Professor Doonan.

"We are effectively taking snap-shots of the chemistry, enabling us to study the reaction products in their native state. In this way we can provide structural evidence for the chemical transformations that are taking place."

The research, being undertaken in the Centre for Advanced Nanomaterials, is supported by the Australian Research Council and the Science and Industry Endowment Fund.

Sir William Bragg started his work on X-rays and when he was Elder Professor of Mathematics and Physics at the University of Adelaide. His son Lawrence was a graduate of the University. The new work is being carried out in the Bragg Crystallography Facility at the University's North Terrace campus.

Explore further: Celebrating 100 years of crystallography

More information: Capturing snapshots of post-synthetic metallation chemistry in metal–organic frameworks, Nature Chemistry, DOI: 10.1038/nchem.2045

Related Stories

Celebrating 100 years of crystallography

August 20, 2014

To commemorate the 100th anniversary of a revolutionary technique that underpins much of modern science, Chemical & Engineering News (C&EN) magazine last week released a special edition on X-ray crystallography—its past, ...

X-rays shine light on atoms at work in a chemical reaction

June 19, 2014

For more than 100 years, scientists have "peered" at atoms in a crystal by analysing the way they scatter X-rays. This process, known as crystallography, reveals the chemical structure of compounds in the crystal and has ...

Explainer: What is X-ray crystallography?

February 4, 2014

Around 100 years ago a father and his son in north England conducted an experiment that would revolutionise the way scientists study molecules. A refined version of their method still remains one of the most important tools ...

Nanomaterial to help reduce CO2 emissions

July 9, 2013

University of Adelaide researchers have developed a new nanomaterial that could help reduce carbon dioxide emissions from coal-fired power stations.

Recommended for you

Semimetals are high conductors

March 18, 2019

Researchers in China and at UC Davis have measured high conductivity in very thin layers of niobium arsenide, a type of material called a Weyl semimetal. The material has about three times the conductivity of copper at room ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.