Artificial intelligence that imitates children's learning

The computer programmes used in the field of artificial intelligence (AI) are highly specialised. They can for example fly airplanes, play chess or assemble cars in controlled industrial environments. However, a research team from Gothenburg, Sweden, has now been able to create an AI programme that can learn how to solve problems in many different areas. The programme is designed to imitate certain aspects of children's cognitive development.

Traditional AI programmes lack the versatility and adaptability of human intelligence. For example, they cannot come into a new home and cook, clean and do laundry.

In artificial general intelligence (AGI), which is a new field within AI, scientists try to create computer programmes with a generalised type of intelligence, enabling them to solve problems in vastly different areas. Gothenburg has a leading research team in this domain. In August, 'exceptional contributions to the AGI field' earned a team of researchers from the University of Gothenburg and Chalmers University of Technology the Kurzweil Prize for the second straight year.

No pre-existing knowledge

'We have developed a programme that can learn for example basic arithmetic, logic and grammar without any pre-existing knowledge,' says Claes Strannegård, a member of the research team together with Abdul Rahim Nizamani and Ulf Persson.

The best example of general intelligence that we know of today is the human brain, and the scientists' strategy has been to imitate, at a very fundamental level, how children develop intelligence. Children can learn a wide range of things. They build new knowledge based on previous knowledge and they can use their total knowledge to draw new conclusions. This is exactly what the scientists wanted their programme to be able to do.

Children learn based on experience

'We postulate that children learn everything based on experiences and that they are always looking for general patterns,' says Strannegård.

A child who for example is multiplication and who knows that 2 x 0 = 0 and 3 x 0 = 0 can identify a pattern and conclude that also 17 x 0 = 0. However, sometimes this method backfires. If the child knows that 0 x 0 = 0 and 1 x 1 = 1, he or she can incorrectly conclude that 2 x 2 = 2. As soon as the child realises that a certain pattern can lead to incorrect conclusions, he or she can simply stop applying it.

Identify patterns

The child can in this way create a large number of patterns not only in mathematics but also in other areas such as logic and grammar. The patterns in a certain area can then be combined with each other and make it possible to solve entirely new problems. The programme developed by the Gothenburg scientists works in a similar manner. It can identify patterns by itself and therefore differs from programmes where a programmer has to formulate which rules the programme should apply.

'We are hoping that this type of programme will eventually be useful in several different practical applications. Personally, I think a versatile household robot would be tremendously valuable, but we're not there yet,' says Strannegård.


Explore further

Artificial intelligence helps sort used batteries

Citation: Artificial intelligence that imitates children's learning (2014, September 23) retrieved 26 May 2019 from https://phys.org/news/2014-09-artificial-intelligence-imitates-children.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Sep 23, 2014
Information can not be destroyed or created. From an application of the principles of conservation. Akin to the principles of energy conservation.
So all information is "non-volatile".
The only difference between life forms and lifeless forms is the way in which information is distributed among the forms. One such measure for such distributions is labeled entropy.

In all likelihood any form exhibiting lowest measures of entropy ("disorder")have the greatest probability to meet whatever definitions are eventually assigned to the word "intelligence".

All life forms we know of become extinct. No information is lost. Which means the probability (however small) for life has always existed and will always exist.

As far as information is concerned, AI can be defined by the way it distributes energy introduced to it.

Nothing is further removed from the definitions of life than AI, as far as information is concerned.



Sep 24, 2014
@NOM
Request feedback.
Follow Vietvet's good example.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more