Western Wall weathering: Extreme erosion explained

August 11, 2014, Hebrew University of Jerusalem
Part of the Western Wall shows highly eroded blocks alongside well preserved stones. Credit: (Photo: Dr. Simon Emmanuel, Hebrew University)

Visitors to the Western Wall in Jerusalem can see that some of its stones are extremely eroded. This is good news for people placing prayer notes in the wall's cracks and crevices, but presents a problem for engineers concerned about the structure's stability.

The Western Wall is a remnant of the ancient wall that surrounded the courtyard of the Jewish Temple in Jerusalem. It is located in Jerusalem's Old City at the foot of the Temple Mount.

To calculate the erosion in the different kinds of limestone that make up the Western Wall, researchers from the Hebrew University of Jerusalem used a laser scan to create an accurate three-dimensional computer model. The researchers are Dr. Simon Emmanuel, the Harry P. Kaufmann Senior Lecturer in Environmental Water Technology, and PhD student Mrs. Yael Levenson, at the Hebrew University's Institute of Earth Sciences.

As reported in an article accepted for publication in the journal Geology, they found that stones made up of relatively large crystals were resistant to wear, so that they were almost unchanged in the 2000 years since they were originally put in place. By contrast, limestone with very small crystals (about one thousandth of a millimeter in size) eroded far more quickly.

In some cases, extreme erosion rates in fine-grained micritic limestone blocks were up to 100 times faster than the average rates estimated for the coarse-grained limestone blocks. In some places these stones had receded by tens of centimeters, potentially weakening the overall structure.

A microscope image of Jerusalem limestone made up of tiny crystals. Credit: Dr. Simon Emmanuel, Hebrew University

To understand what causes the two types of rock to behave differently, the researchers collected samples from ancient quarries thought to have supplied the stones for the Second Temple. Using a powerful atomic force microscope, they were able to see how the rocks disintegrated when they came into contact with water. During the experiments on rocks made up of small crystals, tiny particles rapidly detached from the surface of the rock. These experiments simulated the way in which rain water interacts with limestone in nature.

Observed for the first time in Dr Emmanuel's lab, this process of accelerated erosion can explain why some rocks are more weathered than others. While mechanical weathering is thought to act on blocks and chips of rock at the visible outcrop scale, the researchers showed for the first time that chemo-mechanical erosion extends down to the tiny micron scale. The findings could have important implications for regional and global carbonate weathering.

According to Dr. Emmanuel, "Understanding such weathering processes could help guide the development of effective preservation techniques. For example, it may be possible to develop materials that slow the rate of erosion by binding the tiny crystals in the rock together. Advanced engineering techniques like this should assist efforts to protect not only the Western Wall, but other cultural heritage sites in Israel and around the world."

Explore further: Coins show Herod built only part of Second Temple walls

More information: The research appears as "Carbonate weathering rates accelerated by micron-scale grain detachment," in the journal Geology.

Related Stories

Israeli archaeologists discover ancient quarry

July 6, 2009

(AP) -- Israeli archaeologists have uncovered an ancient quarry where they believe King Herod extracted stones for the construction of the Jewish Temple 2,000 years ago, the Israel Antiquities Authority said Monday. The ...

How Earth avoided global warming, last time around

June 11, 2014

Geochemists have calculated a huge rise in atmospheric CO2 was only avoided by the formation of a vast mountain range in the middle of the ancient supercontinent, Pangea. This work is being presented to the Goldschmidt geochemistry ...

Mountain erosion accelerates under a cooling climate

December 19, 2013

The Earth's continental topography reflects the balance between tectonics, climate, and their interaction through erosion. However, understanding the impact of individual factors on Earth's topography remains elusive. Professor ...

Recommended for you

Apple pivot led by star-packed video service

March 25, 2019

With Hollywood stars galore, Apple unveiled its streaming video plans Monday along with news and game subscription offerings as part of an effort to shift its focus to digital content and services to break free of its reliance ...

How tree diversity regulates invading forest pests

March 25, 2019

A national-scale study of U.S. forests found strong relationships between the diversity of native tree species and the number of nonnative pests that pose economic and ecological threats to the nation's forests.

Scientists solve mystery shrouding oldest animal fossils

March 25, 2019

Scientists from The Australian National University (ANU) have discovered that 558 million-year-old Dickinsonia fossils do not reveal all of the features of the earliest known animals, which potentially had mouths and guts.

Earth's deep mantle flows dynamically

March 25, 2019

As ancient ocean floors plunge over 1,000 km into the Earth's deep interior, they cause hot rock in the lower mantle to flow much more dynamically than previously thought, finds a new UCL-led study.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.