NASA sees Genevieve cross international date line as a Super-Typhoon

August 7, 2014
This visible image of Super-Typhoon Genevieve was taken from the VIIRS instrument aboard NASA-NOAA's Suomi NPP satellite on Aug. 7 at 1:34 UTC. Credit: NASA/NOAA

Tropical Storm Genevieve had ups and downs in the Eastern Pacific and Central Pacific over the last week but once the storm crossed the International Dateline in the Pacific, it rapidly intensified into a Super Typhoon. NASA-NOAA's Suomi NPP satellite captured of the storm.

When Suomi NPP flew over Genevieve on August 7 at 01:48 UTC the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard captured an infrared image of the storm. VIIRS collects visible and infrared imagery and global observations of land, atmosphere, cryosphere and oceans. VIIRS flies aboard the Suomi NPP satellite, which is managed by both NASA and NOAA.

The VIIRS image showed a symmetrical storm with a clear eye, about 15 nautical miles (17.2 miles/27.7 km) wide, surrounded by powerful thunderstorms.

On August 7 at 1200 UTC (8 a.m. EDT) Super-Typhoon Genevieve's maximum sustained winds were near 140 knots (161.1 mph/259.3 kph). Genevieve is a Category 5 typhoon on the Saffir-Simpson Hurricane Wind Scale. Genevieve was located near latitude 15.6 north and longitude 178.1 west, approximately 692 nautical miles (796 miles/1,282 km) west of Johnston Island.

The Joint Typhoon Warning Center (JTWC) noted "Genevieve has rapidly intensified over the past 24 hours." The storm's maximum sustained winds have increased by 75 knots (126.6 mph/ 138.9 kph), pushing the storm from 65 knots (74.3 mph/120.4 kph) to 140 knots (161.1 mph/259.3 kph).

When NASA's Tropical Rainfall Measuring Mission or TRMM satellite passed over Genevieve, data showed that there was a band of thunderstorms over the southern quadrant of the some 60 nautical miles (69 miles/111 km) thick.

The JTWC forecast calls for Genevieve to intensify with a peak of 145 knots (166.9 mph/268.5 kph) later on August 7. The forecast calls for Genevieve to maintain strength over the next day and a half as it turns from a west-northwesterly track to a more northerly track over open ocean.

Explore further: NASA catches the brief life of Tropical Storm Nakri

Related Stories

NASA catches the brief life of Tropical Storm Nakri

August 4, 2014

The low pressure area known as System 96W struggled to organize for a week and finally became Tropical Storm Nakri on August 2 as the Suomi NPP satellite passed overhead. Nakri had a short life, however, as it dissipated ...

NASA sees Typhoon Halong's eye wink

August 4, 2014

As Super Typhoon Halong tracks north through the Northwestern Pacific Ocean, NASA's Aqua and Terra satellites have seen the powerful storm appear to wink at space as it developed and "opened" an eye and then close its eye ...

Recommended for you

Multinationals act on ocean-clogging plastics

January 16, 2017

Forty of the world's biggest companies assembled in Davos agreed on Monday to come up with cleaner ways to make and consume plastic as waste threatens the global eco-system, especially in oceans.

How the darkness and the cold killed the dinosaurs

January 16, 2017

66 million years ago, the sudden extinction of the dinosaurs started the ascent of the mammals, ultimately resulting in humankind's reign on Earth. Climate scientists have now reconstructed how tiny droplets of sulfuric acid ...

Tracking Antarctic adaptations in diatoms

January 16, 2017

Diatoms are a common type of photosynthetic microorganism, found in many environments from marine to soil; in the oceans, they are responsible for more than a third of the global ocean carbon captured during photosynthesis. ...

Study tracks 'memory' of soil moisture

January 16, 2017

The top 2 inches of topsoil on all of Earth's landmasses contains an infinitesimal fraction of the planet's water—less than one-thousandth of a percent. Yet because of its position at the interface between the land and ...

Soil pores, carbon stores, and breathing microbes

January 16, 2017

Researchers at the Pacific Northwest National Laboratory (PNNL) recently studied how moisture influences soil heterotrophic respiration. That's the breathing-like process by which microbes convert dead organic carbon in the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.